
Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

1

Java™ 2 Just Click! Solutions

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com

Copyright © 2001 Tom Swan. All rights reserved. No part of this book, including interior design, cover
design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying,
recording, or otherwise) without the prior written permission of the publisher.

ISBN: 0-7645-4823-9

Printed in the United States of America

About the Author

Tom Swan has written extensively about computer programming for more than 25 years,
and his numerous books on Pascal, Delphi, C++, Windows, assembly language, and now
Java 2 are popular choices among career programmers worldwide. Tom has also written
and published hundreds of articles in numerous computer journals. He is a former
contributing editor to PC World and is the originator of the popular Dr. Dobb's Journal
column “Algorithm Alley.”

When not wedded to a computer screen, Tom studies the classical guitar and pursues his
passion of ocean sailing. The author lives aboard his yacht in and around Miami and Key
West, Florida. Be sure to visit Tom's Web site at www.tomswan.com for updates to this
book and for information about the author’s other books and articles.

To David Sullivan, aboard Troika II, for friendship and good times on and off the water

Preface
In my 25 years of writing about programming languages, one of my primary goals has
been to publish as many source code listings as possible. This book is no different — in
here are well over 150 sample applets and applications that demonstrate a wide variety of
Java 2 programming techniques.

I love reading and writing source code, but I’ve wondered: Are listings in books the best
way to publish computer programs? Perhaps you remember seeing a listing that shows
how to parse a string, but just try finding that example. Was it the one on page 281, or
was it in another book? And so you waste precious time hunting for solutions that you
know are there, if only you could find them quickly and easily.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

2

Java™ 2 Just Click! Solutions solves that problem in a unique way. For selected sections
of each sample listing, and using software that I developed, I’ve created a database of the
listings’ programming techniques. For example, a listing named CloneDemo.java has
entries such as “Right and wrong ways to implement clone()” and “Implementing the
Cloneable interface.” I then sorted those records two ways, alphabetically and by subject,
creating hyperlinked, knowledge-based indexes that form a valuable online Java 2
reference.

In this book is a complete introduction to Java 2 programming using the newest JDK 1.3
release, covering applet and application development, AWT and Swing GUI components,
and much more. All sample listings are included on the accompanying CD-ROM along
with my Just Click! Solutions indexes that you can load into your favorite Web browser.
Simply click on any topic, and you immediately see the line in the listing that provides
the exact solution you need. Copies of the online indexes are also printed in Chapters 25
and 26 for use when you don't have your computer handy.

On my Web site, www.tomswan.com, you'll find sample Just Click! Solutions indexes for
this and, in the future, other books and collections of source code listings. Your
suggestions for improving this book are always welcome. Please let me know (at
tom@tomswan.com) if Java 2 Just Click! Solutions and its hyperlinked indexes help you
to learn and use this remarkable programming language. Good luck!

Acknowledgments
Special thanks to my friend Larry Weeldryer for taking my photograph with his new
digital camera, and to the Island House in Key West for providing the lush foliage in the
background. Thanks also to Barry Braverman for helping to brainstorm this book’s title.
My undying gratitude goes to my longtime editor, Erik Dafforn, not only for making
numerous suggestions and corrections but also for sewing together the many loose ends
of production. Many thanks to Steven Haines for his technical review and suggestions. I
also thank Greg Croy, Joe Wikert, and Richard Swadley at Hungry Minds, Inc. (formerly
IDG Books) for their unwavering support over the years. Thanks are due also to Eric
Newman and Colleen Totz in Editorial, Maridee Ennis in Production, and Marisa
Pearman, Carmen Krikorian, and Angie Denny in Media Development.

Part I Introductions
Chapter 1
Introducing This Book

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

3

Chapter 2
Using the Just Click! Solutions Indexes

Chapter 3
Getting Started with Java 2

Part II Java 2 Tutorials
Chapter 4
Java 2 Fundamentals

Chapter 5
Operators and Statements

Chapter 6
Object-Oriented Programming

Chapter 7
Exception Handling

Chapter 8
String Things

Chapter 9
Numeric Classes

Chapter 10
Arrays

Chapter 11
Abstract Classes

Chapter 12
Interfaces

Chapter 13
Packages

Part III Collections
Chapter 14
Introducing Collections

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

4

Chapter 15
List Collections

Chapter 16
Set Collections

Chapter 17
Map Collections

Chapter 18
Utilities and Legacy Classes

Part IV Applets and Applications
Chapter 19
Threaded Code

Chapter 20
AWT Applets and Applications

Chapter 21
Swing Applets and Applications

Chapter 22
Swing Components

Chapter 23
Graphics Techniques

Chapter 24
Input and Output Techniques

Part V Just Click! Solutions
Chapter 25
Just Click! Solutions by Name

Chapter 26
Just Click! Solutions by Subject

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

5

Chapter 1 Introducing This Book
This and the next two chapters in Part I, "Introductions," introduce Java 2 Just Click!
Solutions, and they help you prepare for getting the most bang from your book. Read this
chapter for system requirements, for conventions used in the text, and for part and chapter
summaries. Chapters 2 ("Using the Just Click! Solutions Indexes") and 3 ("Getting
Started with Java 2") explain how to download the Java 2 JDK 1.3 and runtime
environments free of charge, and they suggest ways to use the CD-ROM's online
hyperlinked indexes and source code listings to your best advantage.

In This Chapter

* Java 2 system requirements

* Conventions used in this book

* Summaries of the book's parts

* Summaries of the book's chapters

How to Use This Book
Java 2 is a true cross-platform programming language and runtime system. For that
reason, this book does not focus on only one type of computer or operating system.
Following are general requirements for running this book's sample programs, and also a
list of conventions used in the book's text.

Requirements
The Java 2 compiler, runtime environment, and miscellaneous utilities run on most
modern PCs using any of the following operating systems:

* Windows 95, Windows 98, Windows NT 4.0, and Windows 2000

* Most versions of Linux and UNIX

* Systems running the Sun Solaris operating system

Hardware requirements are not particularly critical nor extreme, but PCs should have a
Pentium processor running 166 MHz or faster, and about 120MB free disk space to
install everything. I compiled and ran all of this book's programs on a Dell Inspiron 7500
laptop using off-the-shelf releases of Windows 98 and Mandrake Linux version 7.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

6

To run this book's Java 2 applets, you need a Web browser such as Internet Explorer or
Netscape, although you can instead use the JDK's appletviewer utility. However, you
need a browser to view this book's Just Click! Solutions hyperlinked indexes. The
accompanying CD-ROM includes Netscape and Internet Explorer for readers who do not
have browsers, or who need to upgrade.

Note

Because of Sun's licensing restrictions, the accompanying CD-ROM does
not include the Java 2 runtime system and plug-in. However, these items
and others are available free of charge from Sun. See Chapter 2 for
downloading instructions.

Conventions
The following information describes a few conventions used in this book's text:

* File pathnames use a forward slash as the separator character. Windows users
should change this to a backslash. For example, you might need to enter the path
src/c04/Welcome.java as src\c04\Welcome.java.

* Items that you are to type are in bold monospace.

* Programming words are monospaced.

* New terms are introduced in italic.

In writing this book, I have assumed that operating system commands and filenames are
case-sensitive. However, your operating system might permit you to enter some of these
items in all upper- or lowercase. Even so, the Java 2 compiler, runtime system, and other
programs expect you to type upper- and lowercase text exactly as printed.

Throughout this book's chapters, you'll encounter helpful tips and suggestions that look
like this:

Tip

Read this book's tips for suggestions about improving performance and
getting the most out of Java 2.

General notes that further explain or clarify information in the text, or that offer advice
out of context of the present discussion, look like this:

Note

This is an example of a general-purpose note that adds an explanation or
that clarifies the discussion at hand.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

7

Part Summaries
This book's chapters are arranged in five parts, as follows:

* Part I, "Introductions" — This part provides overviews of the book's contents,
instructions on downloading the Java 2 JDK 1.3, runtime system, and plug-in, and
instructions on using this book's Just Click! Solutions hyperlinked indexes.

* Part II, "Java 2 Tutorials" — This part offers a complete tutorial of the Java 2
programming language. You need no prior programming experience to
understand this information, but you should have a working knowledge of your
computer and operating system.

* Part III, "Collections" — This part presents extensive discussions and examples of
Java's collections class library.

* Part IV, "Applets and Applications" — This part includes advanced information
about programming with Java 2. You learn how to write threaded code and how
to create applets, applications, and graphical interfaces using the AWT and Swing
component libraries. Chapters in this part also cover general-purpose graphics
commands, plus input and output techniques.

* Part V, "Just Click! Solutions" — Refer to the chapters in this part to solve
problems such as how to input a string from the command line and how to create
a GUI button. The chapters in this part are copies of the online Just Click!
Solutions indexes for use when you don't have access to your computer.

Chapter Summaries
Following are summaries that briefly describe each of this book's 26 chapters:

* Chapter 1, "Introducing this Book" — As you are discovering, this chapter
introduces this book, lists requirements and conventions, and provides overviews
of the book's parts and chapters.

* Chapter 2, "Using the Just Click! Solutions Indexes" — This chapter explains
how to use this book's hyperlinked Just Click! Solutions indexes. Copies of the
online indexes are printed in Chapters 25 and 26 for use when you don't have
access to your computer.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

8

* Chapter 3, "Getting Started with Java 2" — This chapter explains how to
download and install the Java 2 JDK 1.3 development system, the runtime system,
and the browser plug-in needed to compile and run this book's sample applets and
applications. Instructions are also included for downloading other optional files
such as the Java 2 documentation suite and the JDK's source code. As mentioned,
Sun Microsystems does not permit redistribution of Java 2 files, and for that
reason I was not able to include them on this book's CD-ROM. However, the
downloaded files are free of charge.

* Chapter 4, "Java 2 Fundamentals" — This chapter introduces Java 2 programming
and covers the language's fundamental elements.

* Chapter 5, "Operators and Statements" — This chapter explains how to use
operators in expressions and how to write statements that perform actions at
runtime.

* Chapter 6, "Object-Oriented Programming" — This chapter details the class —
the object-oriented heart and soul of all Java applets and applications.

* Chapter 7, "Exception Handling" — This chapter shows how to use exceptions to
handle error conditions gracefully using a minimum of programming.

* Chapter 8, "String Things" — This chapter is devoted to Java's String and
StringBuffer classes, used to hold character data in memory, and to perform a
variety of operations on character strings.

* Chapter 9, "Numeric Classes" — This chapter explains how to use Java's numeric
wrapper classes to put an object-oriented face on native integer, floating point,
and other data types.

* Chapter 10, "Arrays" — This chapter is all about Java arrays, which unlike those
in many programming languages, are created at runtime and, as a result, are not
fixed in size.

* Chapter 11, "Abstract Classes" — This chapter explains more about classes,
access rules, and abstract classes for creating polymorphic objects that define their
own actions at runtime.

* Chapter 12, "Interfaces" — This chapter introduces the all-important interface, a
purely abstract construction that provides a kind of multiple inheritance not
possible with classes alone.

* Chapter 13, "Packages" — This chapter shows how to organize classes into
packages, and also how to import classes from the JDK's many packages.

* Chapter 14, "Introducing Collections" — This chapter introduces Java's extensive
set of collection storage classes and provides illustrations and tables that
document the class library's hierarchies.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

9

* Chapter 15, "List Collections" — This chapter shows how to use the collection
library's list classes for creating array and list-type storage structures.

* Chapter 16, "Set Collections" — This chapter shows how to use the collection
library's set classes to create storage structures that contain unique object
instances.

* Chapter 17, "Map Collections" — This chapter shows how to use the collection
library's map classes for creating associative storage structures.

* Chapter 18, "Utilities and Legacy Classes" — This chapter lists and explains
many of Java's utility classes, and it also details some legacy classes still available
but no longer recommended for use in new code.

* Chapter 19, "Threaded Code" — This chapter introduces the concept of threads,
and shows examples of the correct ways to write threaded code in which multiple
processes run concurrently.

* Chapter 20, "AWT Applets and Applications" — This chapter explains how to
write programs using the Abstract Windowing Toolkit for creating graphical user
interfaces. The chapter also explains in detail the delegation event model
introduced in the JDK 1.1 and compares AWT and the newer Swing components.

* Chapter 21, "Swing Applets and Applications" — This chapter explores the new
Swing components, which are based on the AWT but greatly expand Java's GUI
programming tools. Swing is now a core element in Java 2's JDK 1.3 and largely
replaces the AWT.

* Chapter 22, "Swing Components" — This chapter explains more about using
Swing components to create graphical interfaces, including toolbars and buttons
that display icons and that use HTML-formatted text.

* Chapter 23, "Graphics Techniques" — This chapter shows numerous examples of
Java's graphics classes and methods, used in both AWT and Swing applets and
applications.

* Chapter 24, "Input and Output Techniques" — This chapter explains how to
utilize standard input and output files and how to read and write binary and text
files using stream classes in Java's I/O package.

* Chapter 25, "Just Click! Solutions by Name" — This chapter is a printed copy of
the online Just Click! Solutions by-name index, arranged alphabetically. Each of
the over 600 named topics directs you to one of this book's listings, showing the
listing number, page number, and line number of the statements you want to find.
To use this chapter's index, simply browse for key words and phrases to find the
information you need.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

10

* Chapter 26, "Just Click! Solutions by Subject" — This chapter is a printed copy
of the online Just Click! Solutions by-subject index. The more than 600 entries are
the same as in Chapter 25, but they are arranged and cross-referenced by over 100
subject categories. To use this chapter's index, browse the main subject categories,
then look up the key word or phrase in the associated named topics.

Summary
* This chapter introduces Java 2 Just Click! Solutions, lists the book's requirements

and conventions, and provides part and chapter overviews.

* You may use most versions of Windows, UNIX, Linux, and Sun Solaris systems
to compile and run this book's Java 2 programs.

* The book is divided into 5 parts and 26 chapters, covering the entire Java 2
programming language, the JDK 1.3, and showing examples of many types of
applets and applications.

Chapter 2 Using the Just Click! Solutions Indexes
Read this chapter for instructions on using the book's online, hyperlinked Just Click!
Solutions indexes. This chapter also explains how to copy the indexes and source code
files from the accompanying CD-ROM to your hard drive.

Tip

If you discover a file named Readme.txt on the CD-ROM, be sure to
consult it for updates, corrections, and late-breaking installation
instructions. For even more up-to-date information, browse my Web site,
www.tomswan.com.

In This Chapter

* The Just Click! Solutions philosophy

* Installing the indexes on your computer

* Browsing the listing files

* How to find the source code files

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

11

Need a Solution? Just Click!
As I wrote in the preface, solutions to many programming problems are available in
computer books like this one, but finding the answers to specific questions isn't always
easy. The book's subject index, as good as it is (and the publisher's indexers are among
the best in the business), helps you find information in the text, but the subject index
lacks entries for specific statements inside the listings.

That's where my Just Click! Solutions indexes come in. They provide online and printed
references to the techniques demonstrated in the book's sample programs. In addition,
you can use the online indexes to view this book's programs online while you read about
them in the text. And, when you don't have access to your computer, you can refer to the
copies of the indexes printed in Chapters 25, " Just Click! Solutions by Name," and 26,
"Just Click! Solutions by Subject."

Installing the Indexes
The Just Click! Solutions indexes on the CD-ROM are ready to use. Just open the
Index.html file in the outer directory. Click Listings in the menu, and you'll see the page
shown here in Figure 2-1.

Insert fg0201.jpg

Figure 2-1
The main Just Click! Solutions index page

For faster responses, copy the indexes and sample programs to your hard drive. The exact
commands for doing this differ from one system to the next. Insert the CD-ROM into
your computer's drive, then follow these general steps:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

12

 1. Create a new directory or folder on your hard drive's file system. You can name
the directory anything you like (I named mine j2jc, short for Java 2 Just Click!
Solutions).

 2. Copy the src directory and all subdirectories and files from the CD-ROM to the
directory you created in Step 1.

 3. Copy index.html, help.html, and cover.jpg from the CD-ROM outer directory to
the directory you created in Step 1.

You can now open the Index.html file in your new directory to begin using the online
indexes. (You may remove the CD-ROM from your computer.) See also "Finding Source
Code Files" in this chapter for help locating this book's source code files so you can
compile and run the book's sample programs.

Copying files from a CD-ROM to a hard drive usually results in those files being marked
"read-only." To make and save suggested changes to this book's source code files, you
probably have to change the files' access permissions. If you are using Windows, after
copying the files you want, open a DOS prompt window, and then enter the following
commands (I assume you copied the files from the CD-ROM to \j2jc):

cd \j2jc
attrib -r *.* /S

The -r option removes the specified files' read-only status. The *.* option processes all
files. The /S option (you must type a capital S) locates files in all subdirectories. You can
now open one of the copied .java text files (use Notepad or another text editor), edit its
contents, and save the results back to disk.

Tip

If you use a word processor to edit a .java source code file, be sure to
save it as plain or ASCII text.

Linux and UNIX users first have to mount the CD-ROM. Insert the disk into your
computer and mount it by typing the following command (most Linux systems use
/mnt/cdrom as the CD drive's mount point):

mount /mnt/cdrom

Next, create a new directory and copy the mounted CD-ROM files to it by typing
commands such as the following (the first line changes to your user directory, but you
can create the new directory elsewhere if you want):

cd
mkdir j2jc
cd j2jc
cp -R /mnt/cdrom/src/* .
cp /mnt/cdrom/Index.html .

Be sure to type a single space ahead of the periods at the ends of the last two commands.
To add write-permission to all copied files, type the following command:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

13

chmod -R a+w *

The -R option recursively "walks" the directory tree. The a+w option adds write
permission. The asterisk specifies all files. You can now open, edit, and save a copied file
using your favorite programming or text editor. Unmount the CD-ROM by typing the
following command (on many Linux systems, the drive's eject button is disabled until the
disk is unmounted):

umount /mnt/cdrom

Notice that the correct spelling of this command is umount — not unmount.

Tip

If you don't want to copy all files to your hard drive, open Index.html on the
CD-ROM using your Web browser, click the Listings button, and select
Files to download or copy. You can then copy individual ZIP files,
arranged by chapter and containing the book's source code files, to your
hard drive.

Browsing the Chapter Listings
After opening Index.html, either on the CD-ROM or on your hard drive if you copied all
files as suggested, click the Listings button to view the opening index page. These
instructions also work for the sample indexes on my web site, www.tomswan.com, but
the full indexes and files are available only on this book's CD-ROM. After opening
Index.html, select one of these four main links:

* Listings by chapter — Click this link, then select a chapter to view listings online
while you read the text. Listings are arranged by chapter and listing number. Just
follow the links to find any listing in the book.

* Files to download or copy — If you copied the CD-ROM files to your hard drive,
you can skip this link. It's needed only if you are viewing listings online or
directly on the CD-ROM. Click one of these links to copy or download the book's
source code files in ZIP format. After copying, unpack the file into a new
directory using a utility such as WinZip. Preserve all relative pathnames when
unpacking.

* Solutions by name — Click this link for a list of source code solutions arranged
alphabetically. Click any entry's link to find the statement for the exact solution
you need. Each of over 600 entries shows the listing name, number, line number,
and page number where you'll find the listing in this book.

* Solutions by subject — Click this link for a list of source code solutions arranged
by over 100 subject categories. These are the same entries as in the Solutions by
Name index, but they are extensively cross-referenced to help you quickly locate
the information you need. (Hint: Scroll to the Listing files subject for a list of this
book's listings, arranged alphabetically by filename.)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

14

Note

Listings printed in the book and viewed online have line numbers added
for reference purposes. The associated source code files, which you can
compile and run, do not have line numbers. To find the source files, see
"Finding Source Code Files" in this chapter.

The online indexes are mostly intuitive. Just click the links to browse the listings and find
solutions to specific problems and topics. Following are a few additional tips to help you
use the indexes more effectively:

* Before clicking a link to a listing, make a mental note of the listing name and line
number, shown in the link. Usually, but not always, that line will appear at the top
of the browser window. If not, you may have to look around a little to find it.

* After clicking an index link, scroll upward to find the program's file name and
number, for example, Listing 4-1, Welcome.java. Click on the file name to open,
download, or copy the source code file. Exactly what happens depends on your
file system — if you see the file text in the browser window, use File|Save to save
it to a file on your hard drive. Or, you might be prompted whether to open or
download the file. In any case, you'll probably want to save the file so you can
compile and run the program.

* Use your browser's Back button to return to the by-name or by-subject index. This
way, you are returned to the location from which you left the page. Or, click
Return to top, then click Switch to Solutions by name page or Switch to Solutions
by subject page to view the index you want from the top. Click Return to Listings
page to return to the main page.

* Use the browser's search command (in Internet Explorer, this is probably called
Edit|Find (on This Page)...) to locate specific class names, files, and other
information in any of the index and listing pages.

* Expand your browser to full screen, and if you have a low-resolution display,
close any side windows such as Favorites in Internet Explorer. The online index
entries are fairly long, and they are more easily viewed using as wide a window as
possible.

Note

To save space in the book, I cut some duplicated and irrelevant lines out
of many of this book's printed listings. However, you always see the entire
listing when you view it online.

Finding Source Code Files
After you read about a listing and view its text onscreen, or as printed in the book, you
can compile and run the program to see how it works. To do this, you need to locate the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

15

program's source code files. Those files are not exactly the same as the printed listings,
and their directories may contain supplemental files not listed in the book or on line —
for example, the HTML files that load applets into a Web browser or the appletviewer
utility. For reference, the printed and online listings have line numbers added, and they
also eliminate miscellaneous comments at the top of each file. (I didn't think you'd
appreciate seeing my copyright notice over 150 times.) The real source code files — the
ones you compile and run — do not have line numbers and they include the
miscellaneous headers. To run a program, you first need to locate these files.

You can locate a listing's source code files several ways, depending on how you choose
to install the CD-ROM indexes. The first (and easiest) method is to copy the entire src
directory from the CD-ROM to your hard drive, as suggested earlier in this chapter under
"Installing the Indexes." After you have done that, following these steps to locate a
source code file. I assume you have named your installation directory j2jc:

 1. Find the chapter directory in the src/listings directory. For example, to locate
Chapter 4's source code files, change to j2jc/src/listings/c04.

 2. Find the program's name in the chapter directory. For example, to find Chapter 4's
Welcome.java source code file, first change to j2jc/src/listings/c04, and then
change to the Welcome subdirectory. In this book, every program is in a
subdirectory named the same, minus the .java file name extension. (Hint: The
subdirectory and file names are shown in the online indexes.) As mentioned, after
copying a file from the CD-ROM, it may be marked read -only. Change the file's
write-permission as explained earlier in this chapter in the section "Installing the
Indexes."

The second way to locate a source code file is to use the online indexes on the CD-ROM.
Use this method if you do not want to copy all files to your hard drive:

 1. Open Index.html on the CD-ROM, click the Listings button, select Listings by
chapter, select the chapter you want, and click on the listing's name and number.

 2. You now see the numbered listing, the same as printed in the book. To find the
associated source code file, scroll up if necessary to the listing number and file
name. Click the file name, and if requested, elect to open the file or to download
(or save) it to any directory of your choosing. If the file opens in your browser,
use File|Save to save it.

 3. Switch to your terminal window, and change to the directory where you copied
the listing. Change the file's write-permission if necessary.

Note

As mentioned, some programs, and all applets, in this book have
additional files that are required for running the program. The preceding
steps copy only the listing's source code file, not any required
supplemental files. However, the steps work for most single-file source

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

16

code listings and are useful particularly if you are viewing the sample
indexes on the Internet.

A third way to find a source code file is to download one of the chapter ZIP files, as
suggested earlier under "Installing the Indexes." Use this method if you don't want to
copy the entire CD-ROM to your hard drive, or if you want to compile and run only the
listings in selected chapters:

 1. Open Index.html on the CD-ROM, click the Listings button, and select Files to
download or copy. Choose the chapter ZIP file you want and copy it to a new
directory. (The listings.zip file contains a copy of each chapter's ZIP files.)

 2. Use a Zip utility such as WinZip to unpack the chapter's source code files. Be sure
to preserve all subdirectories.

 3. Using a terminal window, change to the directory where you unpacked the files,
and then change to the subdirectory, named the same as the program.

Finally, you can use the "brute force" method to locate individual listing source code files.
These steps may be easiest if you want to try only selected sample programs and applets:

 1. Insert or mount the CD-ROM.

 2. Create a directory to hold the source code files. I'll call it /j2jc/ex.

 3. Change to the chapter and listing directory on the CD-ROM. For example, change
to src/listings/c04/Welcome.

 4. Copy all files from the current directory to the directory you created in Step 2.
You might also use a file program such as Windows Explorer or, in Linux, a KDE
desktop window, to copy individual files. Change the files' write-permission if
necessary.

Tip

See "Compiling and Running Listings" in Chapter 4 for general instructions
about running this book's sample programs. Before you can do that, you
need to install the JDK, the runtime system, and for applets, the Java 2
plug-in. Downloading instructions also follow in Chapter 3.

Summary
* This book's CD-ROM contains hyperlinked Just Click! Solutions indexes to all of

the book's sample listings. Using the indexes, you can view listings online, you
can copy and download listing files, and you can locate solutions to specific
programming problems.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

17

* For best results, copy the entire src directory from the CD-ROM to your hard
drive. Open the Index.html file and follow the links to locate the listing you want.
You may also view the indexes and listings directly on the CD-ROM if you don't
want to copy files to your hard drive. You may have to change a file's write-
permission before you can edit and save the file.

* To compile and run a program, locate its source code files on the CD-ROM, or in
the copy of the src directory on your hard drive. Listings printed in the book and
viewed online have line numbers added for reference. The source code files that
you compile and run do not have these numbers.

Chapter 3 Getting Started with Java 2
Before you can compile and run Java 2 programs, you first need to obtain and install a
few files, available free of charge over the Internet from Sun Microsystems. So you can
get started quickly, this chapter lists files that you must download and install but also
covers desired files such as the online documentation and JDK sources that you can delay
installing for now.

Note

Sun Microsystems has repeatedly denied my and the publisher's requests
to provide any of Java 2 on this book's CD-ROM (and, as far as I could
determine, on any other book's disc). Perhaps someday, Sun
Microsystems will revise their distribution policies and make Java 2 easier
to acquire. Until then, however, to make full use of this book, you must
download and install the JDK 1.3 development system, a Java 2 runtime
environment appropriate for your system, and the Java 2 plug-in for your
Web browser. I offer my humble apologies for the inconvenience, and I
request that you send any comments about this situation directly to Sun
Microsystems.

In This Chapter

* Downloading Java 2

* Installing Java 2 on Windows

* Installing Java 2 on Linux

* Installing optional Java 2 files

* Testing your installation

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

18

Where to Get Java 2
Following are suggestions and notes about how to find and download the various files
needed to compile and run Java 2 applets and applications. As of this writing, Java 2's
JDK release number is 1.3. If a newer release is available, by all means use it. However,
many of the program's in this book require JDK 1.3, so if you already have an older Java
compiler and runtime system, you should upgrade as soon as possible.

Required Elements
Java 2 contains three essential pieces that all users must download and install. The exact
filenames differ depending on your platform, but the three pieces are otherwise the same
for all systems. The pieces are

* The Java 2 Development Kit, or JDK, 1.3. This contains the compiler, runtime
utilities, and compiled libraries needed to compile and run Java 2 applets and
applications. Sun also calls this the Java 2 SDK — but they are one and the same.

* The Java 2 Runtime Environment, or JRE, Standard Edition 1.3. This enables
your operating system to run Java 2 applets and applications.

* The Java 2 Plug-in for your Web browser. This piece is included with the Java 2
Runtime Environment. It enables Internet Explorer and Netscape to run Java 2
and Swing applets.

You should locate, download, and install at least those elements for your operating
system. Detailed instructions follow the next section, which lists optional files that you
can download and install now or later.

Desired Elements
In addition to the required elements listed in the preceding section, you may want to
download and install a few other files. The following items are optional but highly
recommended:

* The Java 2 Online Documentation. This is an extensive set of HTML files that
document all of Java's numerous classes and methods. It's an essential tool that
serious Java programmers should have. By the way, a Japanese translation is
available on Sun's Web site.

* The Java 2 Source Code files. You can't recompile the JDK using these files, but
they are the perfect companions to the online documentation. Reading the JDK's
sources is a great way to learn Java 2 programming techniques and to gain a better
understanding of the development system's classes and interfaces.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

19

* The HTML converter utility. You need this utility only to load Swing applets into
a Web browser or the appletviewer utility. If you aren't going to use Swing, you
don't need this utility. The utility is offered for downloading from Sun's Java 2
Plug-in Web page.

Note

Java 2 comes in three editions: Standard (J2SE), Enterprise (J2EE), and
Micro (J2ME). I recommend that you use the standard edition with this
book's sample programs. The enterprise edition is primarily for building
server-side systems, and the micro edition is for embedded systems such
as palm-top computers. After you finish this book, you might want to try
the other editions, but stick with the standard one for now. I used J2SE to
write and test all of this book's sample programs.

Downloading Java 2
The following notes explain how to navigate Sun's Web site and locate the files you need
for Windows and Linux. Because those are the systems I use, they are the only ones I
have tested. However, Java 2 is also available for Sun Solaris operating systems (Intel
and SPARC) from the same Web pages described here.

Note

Web pages are frequently updated, and the following information may
become out of date even as I type these words. Sun's Web site is huge,
and there are undoubtedly many different ways to find the necessary files,
so don't be surprised if you discover alternate paths and methods. Set
aside a good chunk of time, build a tall one of your favorite refreshment,
and take notes in case you have to repeat a step.

Using Sun's Web Site
Regardless of your operating system, begin the same way. Log on to Sun's Web site by
typing the following link exactly as shown into your Web browser's Address field:

http://java.sun.com/

Do not preface the link with the usual www. However, if you have trouble, try logging on
to www.sun.com, and then click the Java 2 SDK button. I don't know why Sun
sometimes calls the JDK the SDK (Software Development Kit), but as mentioned, there
is only one development system, and it is correctly named the JDK 1.3.

Try to find the j2se page (Java 2 Standard Edition). Look for a link that takes you there,
or you can try logging directly on to this slightly deeper link:

http://java.sun.com/j2se

If that doesn't work, look for a button labeled Products and APIs (it was on the left of the
screen the last time I looked), click it, and select Java 2 Platform, Standard Edition. That

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

20

should bring up the correct page from which you can begin downloading. You know you
are on the right page if you see sections titled Current Releases, Related Technologies,
and Previous Releases. You want the files in only the first two sections.

From this point, installation instructions and filenames differ depending on your
operating system. Be sure to read all installation instructions for your operating system on
Sun's Web site, but also read the following notes for additional suggestions and hints that
I found helpful when I installed the files.

Note

In addition to the files listed here, you will find others available for
downloading from Sun's Web site. I have documented only the files that I
have used and found useful in Java 2 programming and in writing this
book.

Downloading Windows Files
Following are the files that I suggest you download and install to use Java 2 on Microsoft
Windows. Filenames may differ due to version number updates, but they should be
similar to those listed here. Only the first two files are absolutely required:

* j2sdk–1_3_0_02–win.exe — This is the Java 2 JDK 1.3, and it contains the
compiler and utilities needed to compile Java 2 programs. The file size is 31.2
MB.

* j2re–1_3_0_02–win.exe — This is the Java 2 Runtime Environment. This file
includes the Java 2 Plug-in. The file size is 5.1MB.

* j2sdk–1_3_0–update1–doc.zip — This file contains the Java 2 online
documentation. Notice that this one is a ZIP file — the others are self-extracting
executables. Although the filename says "update," this is the complete file. The
file size is 22.3MB. It is the same file for all supported platforms.

* jdk1_3_0–src–win.zip — This is the most difficult file to locate and download.
For help finding it, see the notes following this section. The file size is 40.1MB.

* htmlconv2_3.zip — This file contains the HTML converter utility for translating
<applet> tags for use with Swing applets. The file is obscurely located in the Java
2 Plug-in page. The file size is 149.3KB. The converter is a Java application, and
therefore, the same program runs on all supported platforms.

To locate all of those files means wading through several layers of information. Most
files are found using similar commands, but some use a different and confusing array of
links and buttons. The following suggestions should help you navigate through the site
and find what you need:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

21

* Look for a section that lets you choose "One large bundle." The other choice is for
downloading large files in 1.44MB pieces. Use that method only if your online
connection terminates before the download is complete. In that case, follow
instructions on the Web site that explain how to join the pieces and create the
finished installation file. You cannot use the smaller pieces to install Java 2 from
floppy disks, even though the file sizes seem to suggest that this is possible. You
must install from a hard drive directory. Be sure to compare the finished and
joined-together file size with the file on the Web site before proceeding.

* Downloading the JDK source code files requires you to register a user name and
password with Sun's site. You can then "order" the source code product, for which
you receive an invoice in the amount of "$0.00" and an order confirmation
number. This is the most confusing file to locate and download — be sure to
select the right one for your operating system. Expect trouble if your ISP's DNS
numbers do not "reverse resolve" into a domain name, another subtle requirement
of Sun's that, apparently, is intended to prevent downloads outside of the U.S.A.
The sources are provided in different compression formats. Windows users should
select a ZIP file. Linux users should select the .tar.gz formats.

* When you finally get to the download page for each file, you will probably find a
series of FTP buttons. Select the Default FTP site if possible, but if you have
trouble, try selecting another site nearest your location.

* Internet Explorer 5 users: If clicking an FTP button starts displaying text in the
window, immediately click the browser's Stop and Back buttons. Scroll down to a
button labeled HTTP download. Clicking that button should bring up a dialog that
prompts you whether to open or save the file. Select Save and the download
should begin.

Downloading Linux Files
Many Linux fans use Windows for Internet access because so many PCs have
WinModems, none of which are compatible with Linux. If that's you, follow instructions
in the preceding section, but download the Linux files listed next. You can then reboot
into Linux, log on as the super user (root), and copy the files from a mounted DOS
partition to a Linux directory. Despite dire warnings you may have read about this
method scrambling file contents, I have successfully transferred many files between
Windows and Linux this way.

Of course, if you are using Netscape in Linux, you can log on to Sun's Web site and
begin downloading directly to your home or another directory. You might also be able to
use the ftp utility in a terminal window, although I haven't tried this. Whatever method
you decide to use, first read the preceding section for an overview of the process and tips
for navigating through Sun's Web site. Linux files for Java 2 are provided in two formats:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

22

* RedHat RPM shell script — select this format if you have the RedHat Package
Manager on your system. Most Linux systems, not only RedHat's edition, have an
installed copy of RPM, and therefore, most Linux users should download these
files.

* GNUZIP Tar shell script — select this format if you know your way around
Linux and want more control over the installation directories, or if you don't have
RPM. You can probably also use these files to install Java 2 on GNU UNIX.
Using these files, you can create a system-wide installation (you must have super
user privileges), or you can install Java 2 in a user directory. By the way, GNU is
a recursive acronym that stands for "GNU is Not UNIX."

As with Windows, you have the option for each file (except the very small ones) to
download "One large bundle" or to divide the download into 1.44MB pieces. Download
in pieces only if your ISP prevents you from completing the larger download. Follow
instructions on Sun's Web site for joining the pieces to create the finished file. Be sure to
compare the finished file size with the file on the Web site before proceeding.

Linux users who have RPM should download the following two files, both of which are
required:

* j2sdk–1_3_0_02–linux–rpm.bin — This is the JDK 1.3 containing the compiler
and utilities. The file size is 25.6MB.

* j2re–1_3_0_02–linux–rpm.bin — This is the Java 2 Runtime Environment,
needed to run Java 2 applications and applets. The file size is 14MB.

Readers not using RPM should instead download the following two files, both of which
are required. Despite differences in sizes, the files have the same contents as the
preceding two; only the installation details are different:

* j2sdk–1_3_0_02–linux.bin — The JDK 1.3. The file size is 27.1MB.

* j2re–1_3_0_02–linux.bin — The Java 2 Runtime Environment. The file size is
14.4MB.

All readers may choose to download the following optional files. For serious Java 2
programming, however, you should download them all:

* j2sdk–1_3_0–update1–doc.zip — This contains the Java 2 online documentation
in HTML format. Although the filename says "update," this is the complete file.
The file size is 22.3MB. It is the same file for all supported platforms. However,
at one point, it was named j2sdk...doc.tar.gz.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

23

* j2sdk1_3_0–src–linux.tar.gz — These are the source code files for the JDK 1.3.
You cannot use these files to recompile the JDK — they are intended for
information only. See the notes in the preceding section on how to find this file.
You will have to wade through several layers of the Web site, and you must
register a user name and password with Sun before you can download this one.

* htmlconv2_3.zip — This file contains the HTML converter utility for translating
<applet> tags for use with Swing applets. The file is obscurely located in the Java
2 Plug-in page. The file size is 149.3KB. The converter is a Java application, and
therefore, it runs on all supported platforms.

Installing Java 2 for Windows
Sun's Web site provides complete instructions for installing Java 2 on Windows 95,
Windows 98, Windows NT 4.0, and Windows 2000. Be sure to read those instructions,
but also read the following notes — my suggestions differ here and there. Because I use
Windows 98, the following notes are for that system only. However, the steps should be
similar for most other Windows versions.

Note

Because this section is strictly for Microsoft Windows users, unlike
elsewhere in this book, all pathnames use the correct backslash character.

Installing the JDK
First, install the JDK by running the following self-extracting program. It's easiest to use
Windows Explorer to do that, but you can type the program's name into the Start menu's
Run command if you prefer:

j2sdk–1_3_0_02–win.exe

Select the default directory, C:\jdk1.3. If you specify a different directory, some HTML
links may be broken. After installation, open \jdk1.3\readme.html for additional notes. To
uninstall, use the Add/Remove Programs command in the Windows control panel.

Installing the JRE
Follow a similar procedure to install the Java 2 Runtime Environment (JRE) by running
this self-extracting program:

j2re–1_3_0_02–win.exe

Again, select the default directory C:\Program Files\JavaSoft\Jre\1.3. This should also
install the Java 2 Plug-in, but to check this, run the program of that name in the Windows
control panel. Make sure that Plug-in enabled is selected.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

24

Tip

After installing the JRE, open and read the Welcome.html and
README.txt files in the aforementioned path. These contain deployment
notes and further explanations of the runtime files and directories.

Setting Environment Variables
After installing the JDK and JRE, you are asked to reboot your system. Do not do that yet.
First, you need to set two environment variables so you can run the javac compiler and
java runtime interpreter. Do this by modifying the DOS environment variables, PATH
and CLASSPATH.

Windows NT users can select Control Panel@@>System Properties@@>Environment
Options to check and set the variables. In other versions of Windows, to check the
variables' current settings, open a DOS prompt window if you haven't done so already.
Type set to check the current environment settings. You should find a PATH setting, but
there may not be one for CLASSPATH. Java 2 can use, but does not require, a
CLASSPATH setting.

Note

Many Windows users may be unfamiliar with using a DOS prompt window.
For simplicity, this book's sample programs are best compiled and run
using this window, so now is a good time to configure your DOS prompt if
you haven't done so before. To open a DOS prompt window, double-click
the icon labeled "MS-DOS Prompt" on your desktop. If no such icon exists,
create one using Windows Explorer to locate the file Command in
C:\Windows. (Select the file with no extension, not the one named
Command.com.) Right-click and drag that file to an unused space on the
desktop, and select "Create shortcut(s) here" from the pop-up menu to
create the shortcut icon.

To configure your DOS prompt window, right-click the shortcut icon and
select Properties. Or, open the DOS prompt window by double-clicking the
shortcut icon, and click the button labeled with a large capital A, which of
course stands for Aardvark. (The button actually opens the Properties
dialog, and should probably be renamed P for Peacock.)

Use a text editor such as Notepad to edit C:\Autoexec.bat. At the bottom of that file, or
after the last PATH command (if any), enter

SET PATH=%PATH%;C:\jdk1.3\bin

That makes it possible to run the Java 2 compiler and other programs from any other
directory. Also add the following CLASSPATH setting:

SET CLASSPATH=

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

25

That effectively turns the CLASSPATH variable off. This is contrary to Sun's suggestion
that you set this variable to a single period, which references the current directory. If the
preceding doesn't work for you, try this:

SET CLASSPATH=.

Tip

If you cannot make this change to the CLASSPATH — for example,
because you are running a Java visual developer that also uses this
variable — use the –classpath command-line switch with the javac
compiler to compile this book's programs.

If you have read Sun's installation instructions, you are directed to run Autoexec.bat by
typing autoexec at a DOS prompt. Do not do that — it usually causes DOS to run out of
environment space, and worse, also resets the DOS prompt window to full screen text
mode. If this happens to you, follow these steps to reset the window:

 1. Type exit at the full-screen DOS prompt to close the prompt and return to
Windows.

 2. Right-click the MS-DOS Prompt icon. If you don't have this icon, create one as
mentioned in an earlier note by using Windows Explorer to right-click and drag
the file C:\Windows\Command to the desktop.

 3. Select Properties from the pop-up menu.

 4. Click the Screen tab.

 5. Select Window under Usage.

 6. Click OK to close the Properties window.

Save your changes to Autoexec.bat. Now you may reboot. This runs Autoexec.bat
automatically and completes your installation. Turn to "Compiling and Running Listings"
in Chapter 4, or read on if you want to install Java 2's source code, documentation, and
HTML converter utility.

Installing Other Files
To install the JDK's source code files, look for a file named src.jar. This might be in the
C:\jdk1.3 directory, or depending on how you downloaded it, the file might be inside
another compressed ZIP archive. Copy src.jar to C:\jdk1.3 if necessary, and then enter
these commands at a DOS prompt:

cd \jdk1.3
jar xvf src.jar

That creates the directory src in the current directory, and unpacks the JAR (Java Archive)
file. Unlike most command-line utilities, you do not have to type a hyphen ahead of the
option letters xvf (meaning respectively extract, use verbose mode, and open archive file).

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

26

Tip

The JDK source code files apparently terminate lines with line feeds, a
UNIX convention. This causes Windows programs such as Notepad to
display the text in one unreadable blob punctuated with little black squares.
Numerous available text converters can fix the files, but I found that
opening them with the Windows Wordpad utility displays the text correctly.

To install the Java 2 online documentation, copy the following file to the outer C:\
directory:

j2sdk–1_3_0–update1–doc.zip

The HTML files in that archive must be installed using the default path jdk1.3\docs and
subdirectories; otherwise, the links don't work. Because the internally archived paths
begin with jdk1.3\, you must copy the archive to a directory one level higher than where
you installed the JDK. Otherwise, you may end up with an awkward, though harmless,
directory structure such as \jdk1.3\jdk1.3\docs...

Use WinZip or a similar program to open the archive and extract all files, being sure to
preserve the directory structures. After unpacking, open C:\jdk1.3\docs\index.html using
your Web browser. You can then follow the links to all of Java 2's documentation. By the
way, the documentation was produced by the javadoc utility, part of the JDK 1.3.
Examine the JDK source code files to see the raw commands used to prepare the
documentation. (I used my own similar, but different, system to prepare this book's Just
Click! Solutions indexes.)

Tip

Create a shortcut to C:\jdk1.3\docs\index.html on your desktop by right-
clicking and dragging that filename to an empty space on the desktop,
then selecting the pop-up menu command "Create shortcut(s) here." This
provides a fast way to open the documentation by double-clicking the
shortcut icon. To change the icon's name, right-click it and select the pop-
up menu command Rename.

Finally, if you are going to write your own Swing applets, install the HTML converter
utility to translate <applet> tags in HTML files. Download or copy the following file to
C:\jdk1.3:

htmlconv1_3.zip

Like the documentation archive, the converter must be installed using the default
directories. However, unlike the documentation archive, the converter's path begins with
converter\. So, this time, you should copy the archive to C:\jdk1.3 in order to install it in
the path C:\jdk1.3\converter. (However, you may install the program elsewhere if you
want.) In any case, use WinZip or a similar compression utility to extract all files and
subdirectories. See Chapter 21, "Swing Applets and Applications," for more information
on using the converter.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

27

Installing Java 2 for Linux
The JDK and JRE files for Linux are bundled into shell scripts that display Sun's license
agreement before installation begins. In the recent past, these files ended with .sh. Now,
they end in .bin, even though they are still shell scripts. Because of this change, unless
you have recently downloaded the files, you may have to alter the following instructions
slightly.

Installing the JDK Using RPM
If you are using the RPM files, follow the steps in this section to install the JDK. First,
copy the following file into your user directory, or to any other convenient location:

j2sdk–1_3_0_02–linux–rpm.bin

That and other Java 2 .bin files must be executable. If they aren't, make them so by
entering a command such as

chmod +x j2sdk–1_3_0_02–linux–rpm.bin

Tip

Experienced Linux users know that pressing Tab automatically completes
long filenames. You can probably just enter the first part of the preceding
command stopping at j2s and then press Tab. Windows users should be
so lucky!

The location of the installation file is not important because it specifies internally the
installation paths that RPM uses to install the JDK's files. You must become the super
user to begin the installation. Do that by typing su and entering the root password, and
then enter these commands:

./j2sdk–1_3_0_02–linux–rpm.bin
rpm –iv j2sdk–1_3_0_02–linux.rpm

The first command displays Sun's license and creates the .rpm file. The second command
installs the JDK. If you receive an error message concerning glibc, this is probably
because glibc was not installed using RPM on your system (and as a result it's not on the
RPM installed-file list). In that case, enter the following alternate command:

rpm –iv ––nodeps j2sdk–1_3_0_02–linux.rpm

If you are reinstalling over an earlier version, you may also need to use the ––force
option to force RPM to complete the installation.

Note

Readers with glibc versions earlier than 2.1.2–11 may need to upgrade
this critical library file. See "Upgrading glibc" in this chapter for instructions.

Installing the JRE Using RPM
Next, install the Java Runtime Environment (JRE) by locating the following RPM file:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

28

j2re–1_3_0_02–linux–rpm.bin

As when installing the JDK, the location of that file is not critical. Copy it to any
convenient directory, and if necessary, make it executable. Assuming you are still the
super user (if not, enter su and the root password), and type the following two commands
to install the JRE:

./j2re–1_3_0_02–linux–rpm.bin
rpm –iv j2re–1_3_0_02–linux.rpm

Once again, you may need to use the ––nodeps and, possibly, the ––force options if you
receive an error message concerning glibc, or if you are reinstalling over an earlier
release.

Installing the JDK and JRE Using Shell Scripts
If you are not using RPM, you can install Java 2 in any directory. You may choose a
system-wide installation — for example, /usr/local — in which case you must log on as
or become the super user. Or, you may install Java 2 into your home directory, in which
case all files are under your control, and with the proper permissions set, only you may
use them. Copy the following files into the directory you want to use for the installation:

j2sdk–1_3_0_02–linux.bin
j2re–1_3_0_02–linux.bin

Next, enter the following commands to install the Java 2 JDK and JRE:

./j2sdk–1_3_0_02–linux.bin

./j2re–1_3_0_02–linux.bin

In each case, you'll see Sun's license agreement and you need to answer any prompts
appropriately. You can now turn to "Installing the Plug-in" to complete your Java 2
installation.

Upgrading glibc
If you need to upgrade glibc, locate the most recent release on your Linux system's Web
site (for example, log onto www.mandrake.com and search for glibc). The library's
version numbers change frequently. Locate and download the following three files (the
lowercase x is a digit, and the asterisks represent one or more other characters):

glibc–2.x.x–xmdk.ix86.rpm
glibc–devel*.rpm
glibc–profile*.rpm

Log on as or become the super user again if necessary, and enter the following command
for each of the preceding files in the order listed here:

rpm –Uv glibc...rpm

You should now be able to complete the JDK and JRE installations.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

29

Installing the Linux Plug-in
See Sun's documentation for current instructions on installing the Java 2 Plug-in for
Netscape, or enter the following commands. Remove the existing Plug-in by entering

rm –fr $HOME/.netscape/java
rm $HOME/.netscape/plugins/javaplugin.so

Instead of typing $HOME, you can enter ~/. If you are using Netscape 4, set the
following variable by typing the command:

export NPX_PLUGIN_PATH=<jre>/plugin/i386/ns4

If you are using Netscape 6, the steps are more complex. You need to create soft links
from the plug-ins directory — <netscape>/plugins — to the JRE's plug-in directory,
<jre>/plugin/i386/ns600/libjavaplugin_oji.so. The exact command depends on your
installation directories. Enter something like this (all on one line), replacing <jre> and
<netscape> as appropriate:

ln –s <jre>/plugin/i386/ns600/libjavaplugin_oji.so
<netscape>/plugins/.

You should now be able to restart Netscape and load Java 2 applets including those that
use Swing components and converted HTML <applet> tags, as explained in Chapter 21.
Sun's documentation indicates that you may have to restart Netscape twice before the
Plug-in is properly recognized.

Turn to "Compiling and Running Listings" in Chapter 4 or read on to install the
documentation, source code files, and HTML converter.

Installing Other Files
The Java 2 documentation is the same for all supported platforms and is provided in
HTML-formatted files. Locate the following file:

j2sdk–1_3_0–update1–doc.zip

Use the Linux unzip command, or another decompression utility if you have one, to
unpack the files into any directory. After unpacking, open the index.html file using
Netscape to view the documentation.

Installing the JDK source code files and HTML converter are simple tasks. However, the
exact commands differ depending on the compression format of the files that you
downloaded. If they are in ZIP format, use the unzip command to unpack them:

unzip htmlconv1_3.zip

Or, if the files are in the so-called "tarball" format, ending in .tar.gz, extract the files
using commands similar to these:

gunzip filename.tar.gz
tar –xvf filename.tar

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

30

At one point, the documentation files for Linux, although they are the same for all
platforms, were provided in a file named j2sdk...tar.gz. In that case, use the preceding
commands to unpack and install the files.

Note

If you are still logged on as the super user, enter exit to become mortal
again before continuing.

Testing Your Installation
After installing Java 2 and copying this book's source code files and indexes to your hard
drive, test your installation by trying a few simple examples. You can then turn to the
next chapter to begin learning about the Java 2 programming language.

To make sure you can run the compiler, enter one of the following commands. Windows
users can simply type

javac

Linux users need to add an option:

javac ––help

You'll see some messages and a list of command-line options. Linux users can find out
where the compiler was installed (probably /usr/bin) by entering

whereis javac

Linux users can also verify the installed compiler version by entering the following
command, but this doesn't work for some reason under Windows:

javac ––version

If those commands work as expected, try compiling and running a simple example. Enter
the following commands to compile and run Welcome.java from Chapter 4, "Java 2
Fundamentals":

cd j2jc/src/listings/c04/Welcome
javac Welcome.java
java Welcome
Welcome to Java 2 programming!

Tip

The directory name j2jc assumes you copied the entire src directory and
its subdirectories and files from the CD-ROM to your hard drive into that
base directory. Type the filenames exactly as shown — the compiler and
runtime interpreters are case-sensitive, even if your file system is not.
Windows users: open a DOS prompt window, and remember to change
the forward slashes to backslashes.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

31

If the program is an applet, compile its source code file the same way, but don't use the
java utility to run it. Instead, load the HTML file located in the same directory into
appletviewer using commands such as

cd j2jc/src/listings/c20/RandomColor
javac RandomColor.java
appletviewer RandomColor.html

Alternatively, you can use Windows Explorer, or in Linux, a KDE or Gnome desktop file
system, to locate and open the HTML file. This should bring up the applet in Internet
Explorer, Netscape, or another default Web browser. If you have trouble, check that the
Java 2 Plug-in is properly installed.

Summary
* Before getting started with Java 2 programming, you need to download and install

several files as explained in this chapter. Supported platforms include Windows
95, Windows 98, Windows NT 4.0, Windows 2000, Linux, and Sun Solaris
operating systems for Intel and SPARC computers.

* Java 2 comes in three editions: Standard, Enterprise, and Micro. I recommend
using the Standard edition J2SE along with this book.

* This chapter gives detailed instructions for navigating Sun's Web site,
downloading the necessary Java 2 elements, and installing under most versions of
Windows and Linux. Be sure to read Sun's documentation on their Web site in
case any of this information has changed.

* All readers need to download and install the JDK 1.3 development kit, the JRE
1.3 runtime environment, and the Java 2 Plug-in. I also recommend installing the
online documentation and the JDK source code files, but these pieces are optional.

* For developing Swing applets, you also need to download and install the HTML
converter to translate <applet> tags in HTML files for use with the Java 2 Plug-in.
The converter is obscurely located on the Plug-in download page on Sun's Web
site.

Chapter 4 Java 2 Fundamentals

This chapter helps you discover what Java 2 is and how easy it is to use. If you know
another programming language, such as C++, Visual Basic, or Pascal, so much the better.
I assume only that you know a few basics such as what bits and bytes are, and how to
create and edit text files. If you are starting from scratch, you've come to the right place
to begin.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

32

In This Chapter

* An introduction to Java programming

* Identifiers and keywo rds

* Adding comments to programs

* Literal values

* Data types and variables

Welcome to Java Programming
A Java program consists of one or more source code files, which are merely text files
with the filename extension .java. Most Java source code files contain plain ASCII text,
also known as ISO Latin-1. Internally, Java converts plain text to Unicode, which means
that if you have a Unicode editor, you can use it to prepare and edit source code files.
With Unicode, you can insert special character symbols into programs. More important,
in keeping with Java's international appeal, Unicode makes it possible to design program
elements such as menu commands and window titles using almost any human language.
However, for simplicity, all listings in this book and on the CD-ROM are in plain ASCII
text.

It's your choice which editor to use for creating and modifying Java source code files. If
you run Windows 95 or 98 or another version, you can use the Windows Notepad. Or, in
a DOS window, use the Edit program. You can also use a word processor such as
Microsoft Word, WordPad, or WordPerfect to edit Java source code files. If you do that,
however, be sure to save all files as plain or Unicode text. Linux and UNIX users have
many choices of editors, but the Emacs editor, found on all Linux installations, is one of
the most popular.

In this section, you enter, compile, and run a simple Java program. Because I run Linux
and Windows 98 on my computer, the sample commands printed here may differ if you
use another operating system. If you have any trouble, turn to the installation instructions
in Chapter 3, "Getting Started with Java 2," for help.

Note

C and C++ programmers may recognize a lot of information in this and
other chapters. This is because Java is similar in many respects to C and
C++ (especially in their fundamental elements), but there are many key
differences that you might miss if you gloss over the chapters in this part.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

33

Tutorial Listings
The source code file in Listing 4-1, Welcome.java, shows the basic format of a Java
program. Each line is numbered for reference in this book and for use with the Just Click!
Solutions indexes on the CD-ROM, but the numbers and colons at far left are not part of
the program. For practice, you might want to type in this and other listings — in that case,
omit the line numbers and colons. Although Java programs may consist of multiple files,
most of the sample tutorial listings in this and the other chapters in Part II are self-
contained in single files.

Listing 4-1
Welcome.java
001: class Welcome {
002: public static void main(String args[]) {
003: System.out.println("Welcome to Java 2 programming!");
004: }
005: }

Tip

You can find Welcome.java in the src/listings/c04/Welcome subdirectory
on the accompanying CD-ROM. Remember that in Windows, at a DOS
prompt, you must type a backslash as a path separator. In Linux and
UNIX terminals, and in all Web browsers, type a forward slash.

As Welcome.java shows, a basic Java program consists of a class named the same as its
filename minus the .java extension. The class is bracketed with opening and closing
braces, inside of which are various declarations and other items that make up the program.
Source code lines are typically indented to show their association, but Java ignores
indentation and line separations, which simply make programs more readable and
understandable. (Due to space limitations, this book's listing lines are indented in
multiples of one space. It's more common, however, to indent lines by two or four spaces,
or to use tab characters.)

The key element in the sample program is its class, a construction that encapsulates a
program's data and executable elements. Other chapters in this part explain more about
classes. For now, you need to know only that a Java program exists inside at least one
class such as Welcome. Without its content, the Welcome class looks like this:

class Welcome {
 ...
}

Here and elsewhere in this book, a three-dot ellipsis indicates text you are expected to
supply or that is irrelevant to the topic at hand. In this example, the Welcome class
contains a method, code that performs the program's activity. This method is defined
inside the Welcome class as

public static void main(String args[]) {
 System.out.println("Welcome to Java 2 programming!");
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

34

A method is a named group of one or more statements and is similar to a subroutine or a
function in other programming languages. In Java, however, a method is always inside a
class. There are numerous elements to the method shown here, all of which you'll meet in
due course. The important facts in this example are the method's name (main) and the
statement inside the method's delimiting braces. That statement calls another method,
println() ("print line" in English), provided by the standard output file out in the System
class, which is available to all Java programs. (Chapter 24, "Input and Output
Techniques," explains more about files.)

All Java programs that run in stand -alone fashion (that is, not as applets in a Web
browser) must have one and only one main() method. The program begins running at the
first statement inside main(). To distinguish them from other items, method names in this
book are followed by a pair of parentheses.

I'll explain more about objects, classes, and methods as we go along. For now, you need
to understand only that the result of running this program is the string Welcome to Java 2
programming! appearing on your display. The next section explains how to make this
happen.

Compiling and Running Listings
There are many ways to compile and run Java programs. Some of you might be using a
visual developer such as Forté, JBuilder, or Visual Café. That's okay, but for learning
Java programming, it is simpler and more instructive to compile and run sample listings
at a DOS command-line prompt or a Linux terminal window. From now on, I refer to this
environment as the terminal window.

If you followed the installation instructions in Chapter 2, "Using the Just Click! Solutions
Indexes," you have copied all of this book's listings from the CD-ROM to your hard drive.
If you haven't done that, you can use the online hyperlinked indexes to copy individual
files. In any case, after locating the Java listing you need, open or switch to your terminal
window. Enter a change directory (CD) command such as

cd /j2jc/src/listings/c04/Welcome

That assumes you copied the book's listings to a fresh directory named /j2jc. Next, type
the following command to compile the Welcome.java source code file:

javac Welcome.java

You must type the .java filename extension. In Java, filenames are case sensitive, and you
must type the command exactly as shown. Normally, unless something goes wrong, the
Java 2 compiler runs silently. For a running dialog of the compilation process, enter a –
verbose option like this:

javac –verbose Welcome.java

Assuming your Java 2 compiler is properly installed, after a brief pause, you should again
see the prompt in your terminal window. A directory (type dir in Windows or ls in Linux)
shows a new file, Welcome.class, created by compiling the source code file. This file

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

35

contains Java byte codes, which you can execute by feeding them to a Java Virtual
Machine, or VM, also sometimes called an interpreter or viewer. Do that now by entering
this command:

java Welcome

Again, you must type a capital W. The VM reads the byte codes in the Welcome.class
file (you do not have to type the filename extension in this case) and runs the program.
Here's what appeared on my screen when I did this in Windows 98 (my typing is in bold
face):

C:\j2jc\src\listings\c04\Welcome>java Welcome
Welcome to Java 2 programming!

The program's output is shown here on the second line. Compile and run most sample
program listings in this book using similar commands.

Identifiers and Keywords
The individual elements of a Java source code file are known as tokens. Tokens consist of
literals, operands, operators, separators, identifiers, and reserved words.

* Literals are values such as 3.14159 or strings such as @@dpHi there!@@dp that
you enter into a program. Other literals are symbols such as true and false that
have special meanings.

* An expression such as A + B consists of the operands A and B, and one or more
operators such as +. Together, operands and operators create expressions and
statements that perform calculations on data and perform other actions.

* Separators have special meaning in programs. A separator can be a space, a
semicolon, a period, a colon, or another punctuation character. I won't list each
separator character here; you can easily learn proper separator etiquette by
examining this book's listings. There's one separator, however, that you must
know about — the semicolon. It's the source of a lot of confusion in Java and in
other programming languages. In Java, a statement always ends with a semicolon,
as demonstrated by the output statement from Welcome.java:

System.out.println("Welcome to Java programming!");

 The reason you need to terminate a statement with a semicolon is because
statements might have numerous tokens, and the compiler needs you to identify
the statement's end. Declarations, however, do not need semicolons because the
compiler can detect their ends from the declaration's context. For example, a class
declaration ends with a closing brace — a semicolon would be superfluous (and is
not allowed):

class ClassName {
 ...
} // No semicolon here!

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

36

 Other Java tokens are identifiers and keywords, both of which are important
enough to deserve the following separate explanations.

Identifiers
Identifiers are words that you invent to describe your program's variables, methods, and
classes. For example, you might identify a data object as accountBalance or a method as
switchOff().

You may use any combination of letters, digits, underscores, and dollar signs in
identifiers. An identifier, however, must begin with a letter. (Technically, identifiers may
begin with an underscore or a dollar sign, but these are special symbols used internally by
Java. To avoid conflicts, always begin identifiers with letters.) Because spaces are not
allowed in identifiers, some programmers like to use underscores to make words more
readable, as in the identifier

speed_of_light

Because underscores are sometimes difficult to see on screen, I prefer to use
capitalization for a similar effect:

speedOfLight

Java source code is case sens itive, which means that the three identifiers speedOfLight,
speedoflight, and SPEEDOFLIGHT are completely different words. All-uppercase
identifiers are permitted, but not recommended because they might conflict with #define
text macros in code linked to C and C++ libraries.

Note

The standard Java specification states that identifiers may consist of
letters a through z, and A through Z, plus Unicode characters with values
greater than hexadecimal 0x00C0. (For identification purposes,
hexadecimal values are preceded by 0x.) In practice, however, it's best to
create readable identifiers using only the keys on your keyboard.

Keywords
Keywords are identifiers that Java reserves for its own purposes. You've already seen one
such keyword — class. Because this word has special meaning to Java, you can't use it
for anything but its intended purpose.

Following is a list of Java's reserved keywords. The keywords const and goto are
reserved but not used. Some early Java compilers reserved another keyword, byvalue, not
listed here. The words true, false, and null are not technically keywords — they are
considered to be the same as literal values like 123 — but I included them in the list
because you cannot use these words for your own identifiers.

***Production: Please arrange in multiple columns to conserve space. Thanks. ***

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

37

abstract

boolean

break

byte

case

catch

char

class

const*

continue

default

do

double

else

extends

false†

final

finally

float

for

goto*

if

implements

import

instanceof

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

38

int

interface

long

native

new

null†

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

threadsafe

throw

throws

transient

true†

try

void

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

39

volatile

while

***Production: End multi-column list. Thanks. ***
* reserved but not used

† literal value; not a keyword

Comments About Comments
While writing this book, I made many notes on the side to remind me to expand a thought,
research a fact, or insert a program listing in the text. Comments in a program are exactly
like these notes. They are private messages that document a program. The Java compiler
completely ignores comments. Java has three styles of comments, as explained in the
next sections.

C-Style Comments
A standard Java comment, also recognized in C and C++, is delimited with the two-
character symbols /* and */. All text between and including these symbols is ignored.
You can use this style to create single- or multiple-line comments. For example, you
might enter a header like the following one at the beginning of a program file:

/* Title: MyProgram.java by Tom Duck */
/* Revision 2.0 –– all bugs converted to features */
/* Copyright (c) 2001 by Ugly Duckling Software, Inc. */

The advantage of this type of comment style is that it may extend for two or more lines.
For example, the preceding text could also be written this way:

/* Title: MyProgram.java by Tom Duck
 Revision 2.0 –– all bugs converted to features
 Copyright (c) 2001 by Ugly Duckling Software, Inc. */

C++-Style Comments
For single-line comments, or for those at the ends of lines, begin the text with a double
slash. For example, the compiler ignores the following line:

// The compiler ignores this comment.

This style, resurrected in C++ from an earlier language called BCPL (and also recognized
by other languages such as Delphi's Object Pascal), starts with the double slash and
extends to the end of the line. This makes the double-slash comment style ideal for
adding a note to the end of a statement or declaration such as

char ch; // Input character variable

The preceding comment documents the use of the character variable ch. In a large
program with hundreds of declarations, good comments are essential for creating
understandable source code.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

40

Tip

Good code should be readable on its own. Don't rely on comments by
themselves to make your intentions clear. For instance, a variable named
wdisp is not as clear as widthOfDisplay. Good comments clarify self-
documenting code; they don't take the place of it.

Documentation Comments
A third type of comment is sometimes used in Java to create automatic documentation.
This documentation comment is a C-style comment with an extra asterisk. For example,
the following text documents a method named MakeItHappen():

/** This makes it happen */
public static void MakeItHappen() {
 ...
}

The second asterisk identifies the comment as documentation for a following declaration,
in this case, the MakeItHappen() method. Using the javadoc utility, provided with the
JDK, you can create documentation HTML files that you can view using any Web
browser such as Netscape or Internet Explorer.

Note

The Java 2 online documentation was created using documentation
comments embedded in the JDK's source code files. See Chapter 3,
"Getting Started with Java 2," for instructions on downloading and
installing the online documentation and JDK source code.

Listing 4-2, NoComment.java, demonstrates Java's three comment styles.

Listing 4-2
NoComment.java
001: /* This paragraph shows that C–style comments
002: may extend for
003: several lines. */
004:
005: /** The NoComment class demonstrates comment styles */
006: /** This and the last line are "Java Documentation Comments" */
007: class NoComment {
008: public static void main(String args[]) {
009: // This comment is not displayed
010: System.out.println("This string is displayed");
011: System.out.println(/* Embedded comment is not displayed */
012: "This string is also displayed");
013: /* This single–line C–style comment is not displayed */
014: }
015: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

41

If you open the listing source code file or view it online, you'll see a few additional C++
style comments that identify the filename and list my copyright notice. These lines look
like this:

//==
// NoComment.java – Demonstrates Java comment styles
// Copyright (c) 2001 by Tom Swan. All rights reserved.
//==

All listings on the CD-ROM begin similarly, but to save space, this extra header
information is deleted from the printed listings. Following the header is a three-line
comment that uses the C-style double-character brackets. Documentation comments
precede the program's class, NoComment. Inside the listing are several other C and C++
style comments.

Note

Despite my copyright notice in each listing, as in all of my books, you are
free to incorporate any or all of the programming in this book into your own
code.

Debugging with Comments
You might use an embedded comment to temporarily disable some items for debugging
purposes. Just surround the text with comment brackets as in this example:

System.out.println(/*"Original string"*/ "test string");

In that statement, the original string is commented out and a second string is entered for
test purposes. You might also disable entire statements this way, and then run the
program to observe what happens:

/*
System.out.println("some text"); // Display some text
System.out.println("more text");
*/

Both of the disabled println() statements are easily restored by deleting the comment
brackets. I usually place the brackets on separate lines to make them easy to find. Notice
that the double-slash comment appears to be nested inside the C-style comment. However,
no logical nesting takes place — the compiler simply treats all of the text between the
symbols /* and */, including the C++ style comment, as one big comment.

Literal Values
A literal value is a number, a character, a string of characters, or a symbolic name such as
true or false that you type directly into a program. You might use a literal value to
initialize an object to hold that value — assigning 10, for example, to an integer variable:

int i = 10; // Assign literal 10 to variable i

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

42

The following sections briefly describe literal values just to introduce their formats. The
next section, "Data Types and Variables," gives more complete examples of each value
type.

Numeric Literals
Numeric literals are either integers (whole numbers) or floating point values (fractions).
Integers may be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8).
Following are examples of each type of integer literal:

int i = 123; // Assign decimal 123 to integer i
int j = 0x10F9; // Assign hexadecimal 10F9 to integer j
int k = 0123; // Assign octal 123 to integer k

To identify a value's number base, or radix, begin decimal values with the digits 1
through 9, hexadecimal values with 0x, and octal values with 0. Floating point numbers
include a decimal point or are expressed in scientific notation — a whole number
followed by the letter e or E and a positive or negative exponent. Here are some examples:

double f1 = 123.45; // Assign 123.45 to floating point f1
double f2 = 4.257e–3; // Assign 0.004257 to floating point f2
double f3 = 4.257e2; // Assign 425.7 to floating point f3

The reserved word double is a type of floating point variable. Unless specified otherwise,
literal floating point numbers are of this type. Any numeric literal number can be made
negative by preceding it with a minus sign:

int q = –45; // Assign –45 to integer q
double p = –67.8; // Assign –67.8 to floating point p
double r = –3.41e–4; // Assign –0.000341 to floating point r

Character and String Literals
Enclose single characters in single quotes. Enclose strings of zero or more characters in
double quotes. Following are some examples:

char ch = 'X'; // Assign X to character ch
char atSign = '@'; // Assign @ to character atSign
String s = "Multiple characters"; // Assign string to s
String emptyString = ""; // Assign empty string

Tip

When entering characters and strings, don't type opening and closing
quote marks as you might in a word processing document. Type all quotes
using the apostrophe/quote key (I call them straight quotes) to the left of
the Enter key on most PC keyboards. If you are using a word processor to
edit source code files, be sure to turn off any feature that replaces straight
quotes with opening and closing (also known as "smart" or "curly") quote
marks.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

43

Boolean Literals
In addition to numeric, character, and string literals, a Java program may have symbolic
literal values. Most common are the predefined values true and false, spelled in
lowercase. These are boolean values, used in programs to determine the truth or
falsehood of various expressions. The following statement, for example, sets a boolean
variable named debugging to true:

boolean debugging = true; // Assign true to debugging

Another statement might inspect this variable to decide whether to display a value for test
purposes:

if (debugging)
 System.out.println("Reached this part of program");

When that statement executes, if debugging is true, the program displays a message,
which indicates the part of the program that is running at this time. To remove the effect
of the statement, but leave it in place for future testing, simply set the debugging variable
to false.

Data Types and Variables
Variables are typed identifiers that can change value over the course of a program. For
example, the debugging variable in the preceding section is of type boolean, and the
program can change its value to true or false as many times as necessary. Another way to
think of variables is to consider them to be named places in memory that can store data.
A variable can hold only one value at a time of its particular type, but its value can
change as many times as needed.

The key to using variables correctly is to learn as much as you can about Java's data types.
When you create a variable, you must specify its type, and any operations on that variable
must conform to that type. It makes no sense, for example, to multiply two strings. It also
makes no sense to assign a character to a floating point variable. As you will learn, there
are ways to convert values to different types — for example, translating a string into a
floating point value — but you can't indiscriminately mix values of any types.

In this section, you learn more about Java's data types and how to use them to create
variables in programs. First, however, we need to agree on a few terms.

A Few Good Terms
The following definitions are not rigorous (I'll leave such concerns to compiler
documenters), but I find them helpful in using data in programs:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

44

* A data type is literally the amount of memory space that can hold a value of a
specific type. Declaring a variable of a data type reserves one or more bytes of
memory for this kind of value. Most important is to realize that it can take a
different amount of space to hold different types of values: A double value, for
example, takes 8 bytes, while an int value uses only 4.

* A variable is an instance of a specific data type. It is called a variable because the
program can change the instance's value, either by assigning to it a literal value or
the value of another variable, or by performing some operation on the variable —
adding 10 to an integer variable, for example.

* An object in this book is an instance of a class — but more on that in Chapter 6,
"Object-Oriented Programming." In some other books, you might see the word
object used to describe all kinds of variables. Here, an object is always an instance
of a class.

* A value refers to the contents of a variable or object. Values can also be literal. A
value is not necessarily numeric. For example, 123 is a value, but the string
@@dpCockadoodledo@@dp is also correctly called a value.

* A simple data type is an integer, floating point, boolean, or character type. You
may also come across the equivalent terms built-in type or native type to describe
Java's simple data types. Simple variables occupy a fixed amount of space.

* A composite or complex data type is an array, a class, or an interface (you'll meet
that term in Chapter 12, "Interfaces"). In some cases, composite types occupy
variable amounts of space — for example, not all strings are the same length.
Many complex data types have associated methods that perform operations such
as searching a string for sub-strings. I explain many such methods throughout this
book.

Declaring Variables
To store a value of a specific type, you declare a variable of that type. As with all other
Java programming elements, variables are always declared inside a class. Listing 4-3,
VarDemo.java, demonstrates how to declare and assign a value to a variable.

Listing 4-3
VarDemo.java
001: class VarDemo {
002: public static void main(String args[]) {
003: int count; // Declare a variable
004: count = 10; // Assign value to variable
005: System.out.println("Count = " + count);
006: }
007: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

45

Inside method main(), the program declares an integer variable, count, of the data type int.
Next, the program assigns to count the value 10. Finally, it displays count's value. When
you compile and run the program, it displays

Count = 10

Notice how a plus sign appends the value of count to a string in the println() statement.
Actually, this converts count to a string, which is appended to the literal string. You can
use a similar technique to display most kinds of values, as long as Java can convert them
to strings.

In place of lines 3 and 4 in the listing, you can declare and assign a value to a variable
with one statement:

int count = 10;

This declares count as an int variable and assigns it the initial value 10. If you don't
initialize a variable, it is automatically assigned a value of zero. Depending on the
variable's type, this might set the variable to false (if it's boolean), or for a char, the
Unicode value @@sp\u0000@@sp. You can declare multiple variables on separate lines:

int i; // Declare int variable i
int j; // Declare int variable j
int k; // Declare int variable k

Or, you can declare multiple variables of the same type by separating them with commas.
The following declares three int variables:

int i, j, k; // Declare int variables i, j, and k

Integer Variables
Java defines the memory sizes of its simple data types, and these sizes are guaranteed to
be the same on any computer that can run Java byte codes. This fact gives Java a
tremendous advantage over other computer languages such as C, in which the sizes of
data types are left to the particular implementation. With Java, an int is always 32-bits
long and can represent values in decimal ranging from –2,147,483,648 to 2,147,483,647.

Note

Commas in numbers are for readability in this book. In a program's source
code, numeric values never have commas.

Java supports several different types of integers with different memory sizes and
corresponding minimum and maximum value ranges. Table 4-1 lists Java's integer data
types, their sizes in bytes and bits, and their minimum and maximum ranges. All integer
types are signed (that is, they can hold negative and positive values).

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

46

Table 4-1
Integer Data Types

Type Bytes Bits Minimum Maximum

byte 1 8 –128 127

short 2 16 –32,768 32,767

int 4 32 –2,147,483,648 2,147,483,647

long 8 64 –9,223,372,036,854,775,808 9,223,372,036,854,775,807

You may specify integer values of any type in decimal, hexadecimal, or octal. Decimal
values cannot begin with zero. As mentioned, hexadecimal values are preceded with 0x
or 0X (that's a zero, not a capital O). Octal values must begin with zero. Here are some
sample declarations using each format and showing the equivalent values in decimal:

int decimalCount = 123; // decimal 123
int hexCount = 0xF89C; // decimal 63644
int octalCount = 037; // decimal 31

Literal values are by default considered to be of the int data type. As long as the values
are in the proper range, Java can convert them to the appropriate size. Literal 255, for
example, can be converted automatically to a 2-byte short value. When a program
executes a statement such as

short shortCount = 255;

Java first interprets 255 as an int value, which is then downsized to the short data type for
assigning to shortCount. The following, however, does not compile:

byte byteCount = 255; // ???

That doesn't work because 255 is higher than the maximum value that a byte variable can
hold, which is 127.

Note

In this book, the comment // ??? indicates a construction that either
doesn't compile or that might produce faulty results.

Because literal numbers are of type int by default, you must append L to numbers larger
than 2,147,483,647. This is true even when specifying values in hexadecimal. (You may
use a lowercase l, but this isn't recommended because it looks too much like the digit 1.)
For example, the following declares a long variable, bigNumber, and assigns it the
maximum possible positive value:

long bigNumber = 0x7FFFFFFFFFFFFFFFL;

Listing 4-4, IntDemo.java, demonstrates various integer values. From now on, I won't list
similar programs for every single example statement, so don't wait for me to suggest
running the code examples in this book. Insert them into a program and try them out!

Listing 4-4
IntDemo.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

47

001: class IntDemo {
002: public static void main(String args[]) {
003:
004: // Values in decimal, hex, and octal
005: int decimalCount = 123; // decimal 123
006: int hexCount = 0xF89C; // decimal 63644
007: int octalCount = 037; // decimal 31
008:
009: // Display preceding variables
010: System.out.println("decimalCount = " + decimalCount);
011: System.out.println("hexCount = " + hexCount);
012: System.out.println("octalCount = " + octalCount);
013:
014: // Variables of each integer data type
015: byte byteCount = 0x0F;
016: short shortCount = 32767;
017: int intCount = 99999;
018: long bigNumber = 0x7FFFFFFFFFFFFFFFL; // Note final L
019:
020: // Display preceding variables
021: System.out.println("byteCount = " + byteCount);
022: System.out.println("shortCount = " + shortCount);
023: System.out.println("intCount = " + intCount);
024: System.out.println("bigNumber = " + bigNumber);
025: }
026: }

Compiling and running IntDemo.java produces the following output on screen, showing
each assigned value in decimal:

decimalCount = 123
hexCount = 63644
octalCount = 31
byteCount = 15
shortCount = 32767
intCount = 99999
bigNumber = 9223372036854775807

Floating Point Variables
Java has two floating point data types, float and double. A float variable represents
single-precision values. A double variable represents double-precision values. Table 4-2
shows Java's floating point data types, their sizes, and their value ranges. Because float
and double variables can hold very small and very large values, the table expresses
minimum and maximum values using scientific notation.

Table 4-2
Floating Point Data Types

Type Bits Minimum Maximum

float 32 1.4013e–045 3.40282e+038

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

48

double 64 2.22507e–308 1.79769e+308

When using floating point variables, keep in mind that their values may be approximate.
Mathematical operations on floating point values might be round ed internally, and it is a
mistake to expect the results to be perfectly exact. (This is true of most computer
languages, by the way, not only Java.)

Note

Java supports strict and non-strict floating point operations. With strict
floating point in effect, Java evaluates floating point expressions identically
on all platforms. With non-strict floating point, the local system's floating
point library is used for computations, and this might produce small
variations in expression evaluations. See "Strict Floating Point" in Chapter
6 for more information on this topic. Floating point evaluations are non-
strict by default.

You can specify a literal floating point value to be of the float or double data types.
Append F to a literal value to specify it as a float type. Append D to specify the double
type. You may do this using decimal or scientific notation. You may also use lowercase
letters f and d. Generally, Java chooses the correct data type to represent literal floating
point values, but you can use this technique for extra safety. Consider these declarations:

double d1 = 1.55000009e–100D; // Force double type
double d2 = 1.55000009e–100F; // Force float type
double d3 = 1.55000009e–100; // ??? but probably okay

The first assignment forces the literal value to be of type double. The second assignment
forces the value to be of type float. Because that type is less precise than double, d2 may
not be exactly equal to d1. The third assignment is probably okay, provided the Java
interpreter is correctly programmed. For safety, however, appending a D to the literal
value as in the first assignment ensures that the correct type is used.

You can't use the preceding technique to force an inappropriately large or small value to
fit into a smaller space. For example, the following statements do not produce the
expected results:

float doubleTrouble = 1.556701e–050F; // ???
System.out.println("doubleTrouble = " + doubleTrouble);

Early Java versions allowed this to compile, although the results were wrong because the
literal value is outside the allowable range for the float data type. Now, Java 2 reports the
following error message:

X.java:8: floating point number too small
float doubleTrouble = 1.556701e–050F; // ???
1 error

Boolean Variables
A boolean variable can have only one of two values, true or false. Unlike in some
programming languages, Java's boolean is an actual data type, and equivalent integer

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

49

values for true and false are not defined. This means you cannot mix integer and boolean
values in expressions, as you can, for example, in C and C++.

Variables of type boolean and related expressions become more important when you
examine flow control statements in Chapter 5, "Operators and Statements," so the
following statements have no practical purpose. However, if you want to run them, you
can insert the statements into a main() method (use any of the sample listings presented
so far):

boolean positive = true; // Assign true to positive variable
boolean negative = false; // Assign false to negative variable
System.out.println("positive = " + positive);
System.out.println("negative = " + negative);

The keyword boolean is lowercase (as are all Java keywords). So are the values true and
false. As the output statements show, you can display the values of boolean variables
such as positive and negative. When you compile and run the preceding code, it displays
these lines on screen:

positive = true
negative = false

Character Variables
A character variable holds one 16-bit Unicode value that can potentially represent any
character in any written language. Declare a character variable using the char data type.
Try these statements in a main() method:

char ch = '#';
System.out.println("ch = " + ch);

As you probably suspect, that displays the pound-sign character, #. Internally, characters
are represented as Unicode values, so you can also assign integers to char variables.
Change the first line to

ch = 123;

and the program now displays an opening brace, {, the character having the Unicode
value 123. You may specify any value from 0 to 65535. The following two examples use
this method to assign equivalent values to ch (notice that Unicode integer values are
unsigned):

ch = 65000; // Assign integer Unicode value to ch
ch = 0xFDE8; // Same as above but in hexadecimal

When you assign an integer value to a char variable, you are assigning it a bit pattern.
This is not necessarily equivalent to a Unicode character's value. Consider these three
declarations:

ch = '\037'; // Octal
ch = '\37'; // Octal
ch = '\u0037'; // Unicode 0037

The first two assignments are equivalent because digits following a backslash in a literal
character or string are always in octal. Use the \u prefix to specify a Unicode value,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

50

which must have four digits and is expressed in hexadecimal, but without the usual 0x
prefix. The Unicode character associated with \u0037 is the digit character
@@sp7@@sp. To verify this, try the following two lines in a main() method. The
statements display the digit 7:

char ch = '\u0037'; // Unicode 0037
System.out.println("ch = " + ch);

Specify control codes by using the backslash symbols in Table 4-3. These special codes,
also called nonprinting characters, represent characters that have no display symbols, or
that don't appear on most keyboards. Because a backslash indicates the following
character is a control code, type @@dp\\@@dp to insert a single backslash into a string.
Also, because quotes delimit characters and strings, you must use the backslash symbols
\@@sp and \@@dp to designate single and double quote marks respectively. All
nonprinting characters may be used as literal characters and inserted into strings.

Table 4-3
Nonprinting Characters

Name Example Result

New line @@sp\n@@sp Start new output line

Tab @@sp\t@@sp Insert tab

Backspace @@sp\b@@sp Backspace

Return @@sp\r@@sp Carriage return

Form feed @@sp\f@@sp Eject page (form feed)

Backslash @@sp\\@@sp Insert backslash

Single quote @@sp\@@sp@@sp Insert single quote

Double quote @@sp\@@dp@@sp Insert double quote

Unicode hex value @@sp\u0037@@sp Unicode digit 7

Unicode octal value @@sp\37@@sp Unicode octal 037

String Variables
I won't say much about strings here because we'll get into them in detail in Chapter 8,
"String Things." All strings in Java are actually objects of the String or StringBuffer
classes, and because you haven't learned much about classes at this point, I'll merely
mention strings for now.

You already know that strings are delimited with double quotes. Although they may
appear to be arrays of characters, internally they are sophisticated objects with a wide
variety of associated methods.

Like characters, strings may include any of the nonprinting symbols in Table 4-3. One
useful trick is to insert new-line codes, \n, to display blank lines. The following displays

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

51

the value of count with an extra blank line above and below. This is often simpler and
more efficient than using multiple println() statements:

int count = 123;
System.out.println("\nCount = " + count + '\n');

Summary
* A Java program consists of one or more source code files, which are merely text
files that end with the filename extension, .java. Source code files may contain
Unicode characters or plain ASCII text. Internally, Java processes plain text as
Unicode.

* Using javac to compile a Java source code file ending with the filename
extension .java produces byte codes in a new file named the same but ending
with .class. To run the byte codes, you load them into the Java Virtual Machine, for
example, by running the java interpreter.

* The individual elements of a Java source code file are known as tokens. These
include literals, operands, operators, separators, identifiers, and keywords.

* Java has three comment styles. Text bracketed with /* and */ is ignored. Text
beginning with // is ignored to the end of the line. You may also use Java's
documentation comment, /** ... */ along with the javadoc utility.

* Declare variables using Java's many data types. There are several kinds of integer,
floating point, character, and string types from which to choose.

Chapter 5 Operators and Statements
Now that you know about data types and how to declare variables, you're ready to begin
performing actions on data. To do that, as this chapter explains, you write expressions
and statements using a wide variety of operators.

In This Chapter

* Understanding expressions and operators

* Evaluating floating point expressions

* Type casting

* Programming with flow-control statements

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

52

Understanding Expressions
A key element of all computer programming languages is the concept of an expression.
This is any combination of variables, literals, and operators that the program can evaluate,
or reduce, to a value that might be assigned to a variable, or used to determine the future
course of the program. To understand how to use expressions, you first need to learn
Java's operators.

Introducing Operators
An operator is a symbol that performs some kind of action on data. For example, the plus
sign + is an operator that adds two numbers or joins two strings. Java's operators include
some additional separation characters such as commas for listing multiple items and
periods for specifying related objects, as in this statement:

balance = account – charges;

That assumes the three items — balance, account, and charges — are variables of some
compatible data type. When the program runs, the statement evaluates the expression
account – charges, and then it assigns that result to balance. The order in which
expression elements are evaluated depends on operator precedence, as shown in Table 5-
1. Operators higher in the table take precedence over those on lower lines. Operators on
the same row have equal precedence.

Table 5-1
Operator Precedence

() . []

++ –– + – ! ~

new

* / %

+ –

<< >> >>>

< > <= >= instanceof

== !=

&

 ̂

&&

||

?:

= op=

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

53

,

The plus and minus signs on line two are unary operators. The same symbols on line five are binary
operators.

In expressions, operators with higher precedence are evaluated before those with lower
precedence. Otherwise, expressions are evaluated from left to right. For example, the
expression to the right of the equal sign in the following statement multiplies c and d and
then adds that product to b before assigning the total to a:

a = b + c * d;

The expression works this way because the times operator (*) has a higher precedence
than +. To force a different evaluation order, use parentheses:

a = (b + c) * d;

You may also use extra parentheses to make an expression clear — encasing the entire
expression ((b + c) * d), for example. Regardless of precedence, operations inside
parentheses are always completed before those outside.

Notice that the equal sign is Java's assignment operator. In the statement

a = b + c + d;

the result of adding b, c, and d is assigned to a. I am purposely not declaring the data
types of these variables — they might be integers, or they could be floating point values.
As a general rule, the destination should be as large as the largest operand. For example,
if b and d are type int and c is type long, then variable a must be long to hold the result of
the expression. In the next several sections, I'll explain more about different types of
expressions.

Tip

One way to remember mathematical operator precedence is to memorize
the child's phrase, "My Dear Aunt Sally." The first letters of each word are
the same as in "Multiply, Divide, Add, Subtract," the precedence order of
the operators *, /, +, and –.

Unary Integer Expressions
Unary integer expressions are so called because they have only one operator. The
statement

a = –b; // Assign negation of b to a

assigns the negation of b to a. This does not change b's value. To do that, you would have
to write

b = –b; // Negate b

Use the tilde (~) to perform a bitwise negation, turning all binary ones to zeros and vice
versa:

a = ~b; // Assign bitwise negation of b to a

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

54

Use the double character operators ++ and –– to increment and decrement operands.
Unlike unary – and ~, the operators ++ and –– change the values of their operands. The
expression

count++;

increments the value of count by one, and has the same result as

count = count + 1;

That's not necessarily as efficient, however, because most computers have low-level
increment and decrement instructions. (There's no guarantee, however, that a specific
Java interpreter will use those instructions.) Consider some more examples:

i = i + 1; // Add 1 to i
i++; // Same as above
j = j – 1; // Subtract 1 from j
j––; // Same as above

One concept that confuses many programmers on first meeting is that an expression such
as i++ performs an action (incrementing i) but also has a value. In fact, all expressions
have values, so this isn't a special rule. It is important here, however, because the
placement of ++ and –– affects the expression's result. The statements

++i; // Prefix notation
i++; // Postfix notation

each increment the value of i. The first expression, however, equals i's incremented value
because ++ comes before its operand. The second expression equals the value of i before
it is incremented because ++ comes after its operand. The two different placements are
called prefix and postfix notation. A few more examples will help make this concept
clear. First, declare variables i and j and assign 100 to i:

int j, i = 100;

Next, increment i and assign the result to j:

j = i++; // j = 100, i = 101

The comment shows the resulting values of i and j. Because postfix notation is used in
the expression i++, the value of i is assigned to j before i is incremented. Using prefix
notation produces a different result. The following reassigns 100 to i and then increments
i with ++, but this time with the operator before its operand:

i = 100; // Reassign 100 to i
j = ++i; // j = 101, i = 101

Because prefix ++ is applied to its operand before the expression is evaluated, the second
statement sets j to 101. The same prefix and postfix rules apply to the –– operator. Try
these statements in a program:

int i, j; // Declare integer variable i and j
i = 100; // Initialize i to 100
j = i––; // j = 100, i = 99
j = ––i; // j = 98, i = 98

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

55

Here's a hint: To display the variable values, insert the following statement at strategic
locations in the program. Notice how the + operator is used multiple times to form an
output string.

System.out.println("j = " + j + ", i = " + i);

Binary Integer Expressions
Binary integer expressions — a + b, for example — are so called because they require
two operands. You may mix any types of integers — byte, short, int, and long — in a
binary integer expression. Because Unicode characters are represented as 16-bit unsigned
integers, you may also mix char values in binary integer expressions.

If any value, whether literal or variable, in a binary integer expression is of type long,
then the results are long, even if the value of that result might fit in a smaller space. In all
other cases, the results of binary integer expressions are type int, which holds true even if
all operands are of shorter types.

Ignoring that fact will cause you no end of grief! For example, the following statements
do not compile:

byte b1 = 1, b2 = 2, b3;
b3 = b1 + b2; // ???
System.out.println("b3 = " + b3);

You cannot declare three byte variables, add two of them, and assign the result to the
third because the data type of the expression b1 + b2 is int, not byte, and you cannot
assign larger int values to smaller bytes. (By larger and smaller, I mean the space these
values occupy in memory, not their integer values.) The solution is to use a type-cast
expression, which is merely the intended type in parentheses ahead of a variable or
expression:

b3 = (byte)(b1 + b2);

The program now compiles because the type-cast expression tells the compiler to
downsize the result of the expression to an 8-bit byte. It is your responsibility, however,
to ensure that the resulting value can be represented by a byte. Otherwise, a loss of
information might occur. For example, consider these statements:

int a, b = 1;
int c = 2147483647;
a = b + c;
System.out.println("a = " + a);

The resulting value of a might surprise you. Because c equals the maximum integer value
that can fit in 16 bits, that value plus 1 actually equals –2,147,483,648, an effect known
as wrap around. To compute the correct result, you can change variables a and b to type
long. This now sets a to one greater than c:

long a;
long b = 1;
int c = 2147483647;
a = b + c;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

56

Shorthand Operators
When the result of an expression is to be reassigned to one of its operands, you can often
use shorthand operator expressions to save some typing, and perhaps improve the
program's efficiency. For example, rather than write

count = count + k;

use the shorthand equivalent:

count += k; // Assign count + k back to count

Both statements do the same thing. They add count to k and assign the result back to
count. The += characters form a single operator, which might seem a bit cryptic but
permits you to write count only once. This might improve runtime performance because
the interpreter needs to find where count is in memory only once.

Table 5-2 lists Java's binary integer operators and shows their shorthand assignment
forms.

Table 5-2
Binary Integer Operators

Operator Description Assignment Shorthand

* Multiply *=

/ Divide /=

+ Add +=

– Subtract –=

% Modulo %=

& Bitwise AND &=

| Bitwise OR |=

 ̂ Bitwise XOR ^=

<< Left shift <<=

>> Right shift >>=

>>> Shift in 0 at right >>>=

The modulo operator returns the remainder of an integer division, any fraction of which
is truncated. Given the declarations

int a = 7, b = 2, c = 0;

this sets c to 3 (a divided by b):

c = a / b; // c = 3

This sets c to 1 (the remainder of a divided by b):

c = a % b; // c = 1

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

57

Use the bitwise logical operators, & (AND), | (OR), and ^ (XOR) to perform those
operations on the binary digits in integer values. If result is an int variable, the statement

result = result ^ 0xFFFFFFFF;

applies an XOR (exclusive OR) operation with each bit in result and 1, resulting in a
value with all 1 bits changed to 0 and all 0 bits changed to 1. Repeating this same
operation sets result back to its original value. Rather than write result twice, you may
use this shorthand notation:

result ^= 0xFFFFFFFF;

Use shift operators to shift the bits in an integer variable left:

result = result << 3; // Shift result left 3 bits

Or, using the alternative shorthand, shift the bits to the right:

result >>= 4; // Shift result right 4 bits

Shift operations are signed, which might cause results to be different from what you
expect (especially if you are used to thinking in binary). Use the zero-fill-shift operator to
perform unsigned right shifts. For example, try these statements:

int result = 0x80000001;
result >>= 4; // result = 0xF8000000

The hexadecimal value assigned to result equals the negative decimal value –
2,147,483,647. Shifting this value right four bits fills result with 1 bits from the left. The
resulting value in hexadecimal, 0xF8000000, or –134,217,728 in decimal, remains
negative. Using the zero -fill-shift operator produces a different result:

int result = 0x80000001;
result >>>= 4; // result = 0x08000000

This time, the resulting value in hexadecimal, 0x08000000, equals 134,217,728 in
decimal. Because zeros are shifted in at left, the negative integer becomes positive.

Floating Point Expressions
You can use arithmetic operators — *, /, +, and – — in floating point expressions. You
can also combine floating point and integer values, but the result is always either float or
double. If all values are of type float or any integer type, the result is float; if any value is
double, the result is double. Here's an example:

double d1, d2;
d1 = 3.14159;
int q = 3;
d2 = d1 * q; // d2 = 9.42477

The final line multiplies double d1 by integer q and assigns the double result to d2. You
may also use shorthand assignment operators like this:

d2 *= d1;

That's equivalent to

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

58

d2 = d2 * d1;

Unlike in some programming languages, modulo, increment, and decrement operators are
defined for floating point values. The following declares three double variables and
applies the modulo operator:

double result;
double a = 3.14159, b = 3;
result = a % b; // result = 0.14159 (rounded)

The final line sets result to approximately 0.14159 (rounded), which is the remainder of
dividing 3.14159 by 3.0. (The exact result may differ slightly on different systems.)

You can also use increment ++ and decrement –– operators as you do in integer
expressions. They increase and decrease the integer part of a floating point value.
Examine these statements:

double result = 3.14159;
result++; // result = 4.14159
++result; // result = 5.14159
result––; // result = 4.14159
––result; // result = 3.14159

As with integer expressions, prefix notation increments or decrements its operand before
evaluation; postfix increments or decrements after evaluation. If count is type double, the
statement

result = count++;

sets result equal to count, and then increments count by one. The following statement
increments count, and then sets result equal to count's new value:

result = ++count;

Floating Point Errors
Three types of errors might occur with floating point expressions. These are

* Overflow — Result is too large for data type

* Underflow — Result is too small for data type

* Divide by zero — Attempt to divide by zero

Overflow sets the result to a special value named Infinity. Underflow sets the result to 0.
Dividing a floating point value by zero sets the result to Infinity, but unlike with many
programming languages, it does not halt the program with an error message. For example,
the following simply displays result = Infinity:

double result = 3.14159;
result = result / 0.0;
System.out.println("result = " + result);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

59

An invalid floating point expression results in another special value, NaN, short for "Not
a Number." For example, dividing Infinity by Infinity equals NaN.

Type Casting
As mentioned, type casting is often required to assign a value of one type to a variable of
another type. Some type-casting operations are safe; others may or may not cause a loss
of information. For example, it is always safe to assign an int value to a long variable
because the value is guaranteed to be within the long data type's defined minimum and
maximum boundaries.

Safe type casts occur automatically. These statements

long result;
int a = 10;
result = a;

assign an int variable to a long. Trying to make this assignment in the other direction is
like using a shoe horn to put sneakers on a buffalo:

a = result; // ???

That doesn't even compile because the int data type is smaller in size than long. If the
value in result is small enough to fit in an int variable, you can force the compiler to
accept the statement (ignore the choking sound you hear during compilation) by using a
type-cast expression:

a = (int)result;

It is now your responsibility to ensure that the value can safely fit inside a. If not, bits are
lost and the resulting value may not be what you expected.

Table 5-3 shows the allowable type casts that do not potentially lose information and are
automatically handled. Others such as assigning an int value to a byte variable require an
explicit type-cast expression prefaced with the target data type in parentheses.

Table 5-3
Safe Type Casts

Value of Type Can Be Safely Assigned To

byte short, char, int, long, float, double

short char, int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

double double

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

60

When casting floating point values to integer variables, the results are truncated — they
are not rounded. For example, the following program fragment sets the integer result
equal to 4:

int result;
double v = 4.999999;
result = (int)v; // Use type cast to assign v to result

Note

One exception to Java's type-casting rules is boolean. A boolean value
cannot be cast to any other type.

Flow-Control Statements
With what you know so far about Java data types, variables, and expressions, you can
begin writing simple programs that perform useful actions. To do this, you need to use
flow-control statements, which affect the order in which the program's statements are
executed.

Flow-control statements can select actions based on the values of variables, they can
perform loops, and they can do other useful work. In most cases, one or more relational
expressions provide the fuel for a flow-control statement, so let's start there.

Relational Expressions
Relational operators create boolean expressions that have true or false values. Don't
confuse them with integer operators, a common mistake. For example, the statement

a = b;

assigns the value of b to a, but the statement

a == b;

is a boolean expression that equals true only if a equals b. You might use such an
expression in an if flow-control statement, which selects among two actions, depending
on whether its relational expression is true:

if (a == b)
 System.out.println("a equals b");

If the value of a equals b, the program displays a message; otherwise, it skips the println()
statement. A common mistake I've probably made as many times as I've gotten up in the
morning is to write = in place of ==. If you mistakenly type

if (a = b) // ???
 System.out.println("a equals b");

Java reports an error that tells you the compiler expected a boolean expression but found
an int. This differs from C and C++ in which boolean and integer expressions are
interchangeable. In Java, they are not.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

61

In addition to their use in flow-control statements, relational expressions can be assigned
to boolean variables. For example, the following fragment sets a boolean variable, result,
to true:

boolean result;
int a = 1, b = 1;
result = (a == b);
if (result == true)
 System.out.println("result is true!");

The third line evaluates the expression (a == b), producing a true or false result, which is
assigned to the result variable. Notice how the if statement compares the value of result
with true. Because result is already of type boolean, this isn't necessary, and you can
more simply write

if (result)
 System.out.println("result is true!");

Table 5-4 lists Java's relational operators, which give boolean results when used in
expressions. You'll see examples of these operations in the next several sections.

Table 5-4
Relational Operators

Operator Description Example

< Less than (a < b)

> Greater than (a > b)

<= Less than or equal (a <= b)

>= Greater than or equal (a >= b)

== Equal (a == b)

!= Not equal (a != b)

&& And (a <= b) && (b <= c)

|| Or (a <= b) || (b >= c)

if–else Statements
Use if, optionally followed by else, to conditionally execute code. For example, the
following fragment tests whether an integer is less than another and displays an
appropriate message:

int a = 10, b = 20;
if (a < b)
 System.out.println("a < b");
else
 System.out.println("a >= b");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

62

An else statement is optional and can be followed by another if statement to create
multipath conditionals:

if (a < b)
 System.out.println("a < b");
else if (a == b)
 System.out.println("a = b");
else
 System.out.println("a > b");

Only one of the println() statements executes, depending on the values of the compared
integers. To execute more than one statement, create a statement block delimited by
braces:

if (a < b) {
 System.out.println("a < b");
 System.out.println("That's all folks!");
}

switch Statements
A switch statement selects statements to execute based on the value of a condition. It is a
kind of shorthand for a complex if–else statement, also known as a multiway decision
tree, which looks like this:

if (a == 1)
 // statement for a == 1
else if (a == 2)
 // statement for a == 2
else if (a == 3)
 // statement for a == 3
else
 // statement for all other values

For clearer and possibly more efficient code, use a switch statement to do the same job.
Listing 5-1, Switcher.java, demonstrates how to create a switch statement as a multiway
decision tree.

Listing 5-1
Switcher.java
001: class Switcher {
002: public static void main(String args[]) {
003: int a = 2;
004: switch (a) {
005: case 1:
006: System.out.println("Case 1");
007: break;
008: case 2:
009: System.out.println("Case 2");
010: System.out.println("Final statement in case 2");
011: break;
012: case 3:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

63

013: System.out.println("Case 3");
014: break;
015: default:
016: System.out.println("All other cases");
017: }
018: }
019: }

Note

Remember, to compile sample listings in this book, type javac
Switcher.java. To run the compiled program, type java Switcher. These
commands are case sensitive. From now on, I'll assume you know how to
compile and run programs, so I won't repeat these instructions again.

The control expression in parentheses after the keyword switch may be any expression or
variable that can be compared to a literal integer or character. Follow the switch keyword
and control expression with the word case, a value to compare to the control, and a colon.
If the control expression matches the case value, the statements following that case are
executed.

Use break statements in each case to exit the switch statement. If you forget to insert
break, execution continues with the next case (in other words, the program "falls
through" the current case to the next one). This is often a mistake, but it might be useful
in rare circumstances. Try taking out the break from case 2 in the sample listing and run
the program modified like this:

case 2:
 System.out.println("Case 2");
 System.out.println("Final statement in case 2");
// falls through to next case
case 3:
 System.out.println("Case 3");
 break;

If the control expression equals 2, the program prints the two statements for that case, but
also falls through to print the statement for case 3.

You may follow a switch statement with an optional default statement, which is executed
if no case matches the control expression. You do not have to supply a default case, but if
you do, it must be last. You don't need to insert a break in the default statements, but
doing so is not an error:
switch (c) {
...
 default:
 // statements for default case
 break; // okay but not required
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

64

while Statements
A while statement performs an operation as long as its control expression is true.
Presumably, something in the while statement eventually causes the expression to
become false; otherwise, the while loops endlessly. (Actually, this can be a useful
technique — but I'll avoid the subject of endless loops until we examine threads in
Chapter 19, "Threaded Code.") The program WhileCount.java in Listing 5-2 displays the
values 1 through 10.

Listing 5-2
WhileCount.java
001: class WhileCount {
002: public static void main(String args[]) {
003: int count = 0;
004: while (count < 10) {
005: count++;
006: System.out.println("Count = " + count);
007: }
008: }
009: }

When the control expression (count < 10) becomes false as a result of the program
incrementing count, the loop ends. In this case, so does the program because no other
statement follows the while loop.

do–while Statements
You might never use a do–while statement, but they are handy on rare occasions. It's
similar to a plain while, but the control expression comes at the end instead of at the
beginning. For comparison, Listing 5-3, DoWhileCount.java, counts from 1 to 10 using a
do–while loop.

Listing 5-3
DoWhileCount.java
001: class DoWhileCount {
002: public static void main(String args[]) {
003: int count = 0;
004: do {
005: count++;
006: System.out.println("Count = " + count);
007: } while (count < 10);
008: }
009: }

The key to selecting between while and do–while is to remember that a while loop does
not execute its statements at all if the controlling expression is initially false. A do–while
loop, however, always executes its statements at least once because its controlling
expression is evaluated at the end of the loop.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

65

for Statements
A for statement is as versatile as a hammer, and you'll use it in many circumstances. It is
usually preferred over while or do–while when you or the program can determine in
advance how many loops to execute. A for statement has these elements:

* The keyword for

* A three-part expression in parentheses

* A statement or block to execute

The design of a for loop is easiest to learn in schematic form. It uses this layout:

for (statement; expression1; expression2) {
 // statement or block to execute
}

The braces are required only if the block to execute contains two or more statements, but
you can use braces anyway for clarity. Listing 5-4 uses a for loop to count from 1 to 10.

Listing 5-4
ForCount.java
001: class ForCount {
002: public static void main(String args[]) {
003: int count;
004: for (count = 1; count <= 10; count++) {
005: System.out.println("Count = " + count);
006: }
007: }
008: }

Rather than declare the integer count variable separately, as done in the sample listing,
you may declare the control variable inside the for statement:

for (int count = 1; count <= 10; count++) {
 System.out.println("Count = " + count);
}

When you declare a for statement's control variable that way, it exists only for the loop's
statements. In this case, count is available for use only in statements executed by for —
this also means that another statement can declare another variable named count with no
conflict.

This example loop initially sets count to 1. It executes the loop's statement or statement
block while the controlling expression, count <= 10, is true. After executing the loop's
statement or block, it executes the final expression, which in this case increments count
by one. As with other loops, it is usually important that this expression perform some
action that eventually causes the control expression to become false so that the loop ends.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

66

label, break, and continue Statements
These three types of flow-control statements are easily misused, and are best put into play
only when absolutely necessary. A label marks any statement in a program. A break or
continue statement halts a while, do–while, or for loop, and starts execution at the labeled
position.

An example helps make these concepts clear and also shows the subtle difference
between break and continue. Listing 5-5 shows the correct way to use these statements,
but as this listing also demonstrates, the results can be messy. To make the sample
program easier to follow, I commented the closing braces, showing the flow-control
statement to which each belongs.

Listing 5-5
LabelDemo.java
001: class LabelDemo {
002: public static void main(String args[]) {
003: int i, j;
004: OuterLoop:
005: for (i = 1; i < 100; i++) {
006: System.out.println("\nOuter loop # " + i);
007: InnerLoop:
008: for (j = 1; j < 10; j++) {
009: if (j % 2 == 0)
010: continue InnerLoop; // Skip even j values
011: if (i > 4)
012: break OuterLoop; // Abort if i > 4
013: System.out.println("j = " + j);
014: } // end of inner for statement
015: } // end of outer for statement
016: System.out.println("Program exiting at OuterLoop:");
017: } // end of main() method
018: } // end of class declaration

A label is any unused identifier followed by a colon, for example, OuterLoop: at line 004.
The sample program executes two for loops, one inside the other. Two labels —
OuterLoop: and InnerLoop: — mark the position above each loop.

Inside a while, do–while, or for statement, a continue statement causes an immediate
jump to the designated position. Us e continue to continue executing the loop from a
specific point when you do not want to execute any other statements from that point on.
This might be easier to fathom in schematic form:

L1:
for (...) {
 // statements to always execute
 if (condition)
 continue L1; // Do another loop skipping all that follows
 // statements to conditionally execute
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

67

If the condition is true, the if statement executes continue, beginning another loop (unless
the for is finished) but skipping the rest of the statements.

A break statement is similar to continue, but completely exits the loop. Again, this might
be easier to understand in schematic form:

L2:
for (...) {
 // statements to always execute
 if (condition)
 break L2; // exit loop completely
 // statements to conditionally execute
}

The difference is that, if the condition is true, the break statement halts execution of the
loop, and the program continues after the for statement's closing brace. Despite
appearances, the for statement does not begin anew. A good use for break is to get out of
a nested flow-control statement because of an error or other condition.

Note

Unlike C, C++, and many other programming languages, Java does not
support an unconditional goto statement. This is no deficiency — any task
that a goto can do, a more structured flow-control statement can
accomplish as well but with clearer results. However, Java reserves the
goto keyword.

Summary
* Expressions are constructions that Java can evaluate, or reduce, to a single value.

Expressions can be simple — for example, the name of a variable is an expression
that equals its value. They can also be complex and involve operators that
combine two or more values.

* Operators perform actions on data values. Java supports numerous mathematical,
logical, and bitwise operators that you can use to create expressions for
manipulating data. Operators with higher precedence are evaluated before
operators with lower precedence; otherwise, expressions are evaluated from left to
right. Use parentheses to force a different expression evaluation order.

* Flow-control statements conditionally select among a program's statements and
perform other jobs such as creating loops. Java has if, switch, while, do–while,
and for statements. Java also supports labeled statements for use with break and
continue, which are occasionally useful for ending deeply nested while and for
loops.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

68

Chapter 6 Object-Oriented Programming
Java is completely object-oriented. This means that every piece of data and every action
in a Java program exists or takes place in the context of a class. As you will learn in this
chapter, the class is Java's basic building block. You can use classes to perform all sorts
of operations such as input and output, and you can also create your own classes.

Because classes have extensive features, it is impractical to cover everything about
classes and objects in one chapter. This chapter introduces classes and the concepts of
object-oriented programming with Java. We'll return to these topics again and again in
future chapters.

Note

Although Java and C++ classes resemble each other, their likeness is only
skin deep. There are many differences, some subtle, between Java and
C++ classes, so even if you know C++, don't skip this chapter.

In This Chapter

* Introducing classes and objects

* Class methods

* Input and output methods

* Objects and garbage collection

Introduction to Classes and Objects
The primary purpose of a class is to encapsulate data and the methods that operate on that
data. Keeping data and methods together helps you create well-organized programs and
also prevents pitfalls that are common in conventional programming languages, such as
passing the wrong data to subroutines.

Declaring Classes
A class begins with the class keyword followed by braces that delimit the class's contents:

class AnyClass {
 ...
}

Most classes have one or more methods, such as main(), which is found in all stand-alone
Java applications:

class AnyClass {
 public static void main(String args[]) {
 // statements inside main()

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

69

 }
}

The method is declared to be public so that it can be referred to from outside of the class.
As you have seen, statements inside main() perform the program's actions. You can also
create other methods and call them from main() and from other places:
class AnyClass {
 public static void hiThere() {
 System.out.println("Hi there!");
 }
 public static void main(String args[]) {
 HiThere(); // Call HiThere() method
 }
}

This class has two methods, hiThere() and main(). The statement in main() calls the
hiThere() method, which displays a string. (If you enter this program, save it in a file
named AnyClass.java.)

Note

Class names are usually capitalized. Variables and methods begin with
lowercase letters. These conventions are not requirements, but help make
programs clearer to read and understand.

As you know, you can declare variables inside functions. You also can declare variables
in a class:

class AnyClass {
 static int i; // Declare class variable
 public static void hiThere() {
 for (i = 0; i < 4; i++)
 System.out.println("Hi there!");
 }
...
}

The static int i declaration creates an integer variable that any method in the class can use.
You might wonder (rightly) at this point why I am using the word static in every variable
and method declaration. This is because the sample programs have so far used classes in
only a rudimentary way — as shell-like constructions that specify data and code. But
classes are more than simply shells; they are schematics for creating objects.

Declaring Objects
An object is also sometimes called an instance of a class. An object is a variable, just like
integers, characters, and those of other data types. An object occupies space in memory,
and it must be initialized. You may create objects of most any class, and you may create
as many objects of a specific class as you need. Listing 6-1, DateObject.java, shows the
basics of creating classes and objects.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

70

Listing 6-1
DateObject.java
001: // Declare DateClass
002: class DateClass {
003: int month;
004: int day;
005: int year;
006: public DateClass(int m, int d, int y) {
007: month = m;
008: day = d;
009: year = y;
010: // year = y + 1900;
011: }
012: public void display() {
013: System.out.println(month + "/" + day + "/" + year);
014: }
015: }
016:
017: // Declare main program class
018: class DateObject {
019: public static void main(String args[]) {
020: // Create and display a DateClass object
021: DateClass birthday = new DateClass(7, 18, 64);
022: birthday.display();
023: // Create and display another DateClass object
024: DateClass future = new DateClass(1, 1, 01);
025: // DateClass future = new DateClass(1, 1, 101);
026: future.display();
027: }
028: }

The sample application declares two classes. DateClass stores a date using three integer
instance variables, month, day, and year. A constructor method, named the same as the
class (see line 006), initializes the instance variables by assigning its parameters (m, d,
and y). The class also declares a method, display() (line 012), that shows the date in
m/d/y format. Some Java texts call constructors creation methods. They are used to
initialize newly created objects.

To use the class, the main program creates an object by using Java's new operator. This
tells the interpreter to instantiate the class — in other words, to create an object of the
class:

DateClass birthday = new DateClass(7, 18, 64);

The object is named birthday, and it is initialized by a new instance of the DateClass
constructor. The integer arguments in parentheses are passed to the class constructor's
parameters, which as mentioned, are saved in the object's instance variables. After
creating an object, a program typically calls methods in reference to it. For example, this
calls the class's display() method for the birthday object:

birthday.display();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

71

It's useful to think of this statement as giving the birthday object a command to display
itself. In object-oriented programming, it's common to perform actions this way by
calling class methods. For example, you might tell a graphics object to display itself or to
change its colors.

The sample program also shows how to create multiple objects of the same class. The
following statement, for instance, constructs another object, named future, of DateClass,
to the date 4/10/2005:

DateClass future = new DateClass(4, 10, 05);

As mentioned earlier, a class is a schematic for creating objects. A class is a data type, in
much the same way of other built-in types such as integers. Compare the preceding
statement to one that creates an integer variable:

int count = 10;

The only difference is that, to create class objects, you use the new operator and you
typically (but not always) pass values to the class constructor to initialize instance
variables. You can also declare class objects in one place and initialize them at another:

DateClass d1; // Declare d1 object
...
d1 = new DateClass(5, 6, 70); // Initialize d1

The first line declares a DateClass object, after which the program performs some other
tasks (indicated by the ellipsis). When ready, the program initializes d1 using new. You
may also reinitialize an object to give it other values. For example, the preceding
fragment could be followed by

d1 = new DateClass(8, 9, 10); // Reinitialize d1
d1.display(); // Display new object

which reinitializes the object and displays its value. You do not have to delete or dispose
of the objects you create. When the program no longer refers to an object, Java
automatically deletes it from memory, a process called garbage collection.

Note

Objects such as those demonstrated here are actually references to the
real object data stored somewhere in memory. This has important benefits
such as when passing an object to a method, because what's actually
passed is merely a reference (the memory address) of the real object, not
the object's data. Usually, it's safe to consider an object simply to be itself.
But tuck this fact in the back of your mind: Objects are actually references.

Modifying Classes
One of the key benefits of object-oriented programming is that classes control access to
their data and methods. You'll learn more about this subject throughout this book, but for
a simple demonstration, consider how you might improve the DateClass in the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

72

DateObject.java sample program (refer back to Listing 6-1). A problem with that
program is that it displays dates such as January 15, 2001 as

1/15/1

It would be better if the year were displayed in full, and to make that change we can
arbitrarily specify that the DateClass store years minus 1900. Accordingly, the year value
50 equals 1950; the year value 105 equals 2005, and so on. To make this change, modify
the statement year = y; to the following (delete line 009 and enable line 010 by removing
the comment symbol):

year = y + 1900;

Also modify the following statement in the main program class (change the year 01 to
101 by deleting line 024 and enabling line 025):

DateClass future = new DateClass(1, 1, 101);

When compiled and run, the program now displays dates such as

7/18/1964
1/1/2001

Another improvement might be to change the integer instance variables to smaller data
types. There's hardly any good reason to waste space by storing month and day values as
32-bit integers! You can reduce the size of DateClass by declaring month and day as type
byte:

class DateClass {
 byte month;
 byte day;
 int year;
 public DateClass(int m, int d, int y) {
 month = (byte)m;
 day = (byte)d;
 year = y;
 }
...
}

This change also requires using type-cast expressions in the assignments to month and
day in the DateClass() constructor, since the program still passes the parameters as
integers (they could also be changed to bytes).

Significantly, none of these changes affect the use of the class. The main program
remains unchanged even though the storage format of the DateClass has been altered.
This is another benefit of object-oriented programming. In general, you may make
changes to well-designed classes without affecting their use in other parts of the program.

Importing Classes
Our DateClass class is merely a demonstration model — a real date class needs more
sophisticated programming such as the ability to get the current date from the operating
system, and to perform calculations on dates. One great benefit of Java is that it comes

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

73

loaded with a rich class library of packages that provide ready-to-use classes for a variety
of purposes. Instead of writing new classes, try to use Java's packaged classes whenever
possible. They save you time, and they reduce the size of your programs. Also, because
Java's classes are debugged, they help you create robust code.

For example, Java already has a date class named java.util.Date. The class name is Date;
it is declared as part of the java.util package, which provides other classes. (You learn
more about packages in Chapter 13, "Packages.") To use a Java class library package,
you import it into your program. Do this with an import statement such as

import java.util.Date;

Generally, this and other import statements should be at the top of your program's source
file. You may also use a wild-card asterisk to import multiple classes. The statement

import java.util.*;

imports all classes declared in the java.util package. The following statement imports all
java package classes:

import java.*;

Note

Java's language classes, collected in the java.lang package, are
automatically imported into all applications. You do not have to import the
System class in order to write statements such as System.out.println();.

Listing 6-2, DateDemo.java, shows how to import a class and use it in a program.

Listing 6-2
DateDemo.java
001: import java.util.Date; // Import the Date class
002:
003: // Use the imported Date class
004: class DateDemo {
005: public static void main(String args[]) {
006: Date today = new Date();
007: System.out.println(today.toString());
008: }
009: }

Use Java's classes the same way you do your own. First, import the class with an import
declaration as shown in the sample program, and then use the new operator to create one
or more objects of the imported class. For example, the sample application constructs a
Date object with the statement:

Date today = new Date();

That creates an initialized object, today, set to the current date and time. Java's Date class
also provides ways to extract the object's information. For example, call the toString()
method to get a string representation of the date and time:

System.out.println(today.toString());

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

74

When I ran the program, that statement printed the following line on my screen:

Mon May 21 11:10:36 EST 2001

Note

Although you can use the Date class as shown here, Java 2 adds better
date support in its DateFormat, TimeZone, and Calendar classes. Look
them up in Java's online documentation. Some class features, such as the
ability to construct Date class objects from strings and integer values,
have been deprecated in Java 2.

Inheriting Classes
When a class doesn't do exactly what you want, you can build a new class based on it.
Your class inherits the original class's methods and instance variables, to which you can
add your own code and data. Inheriting classes is a great way to reuse existing code. The
term code reuse does not refer to a text editor's cut and paste commands. Developing
reusable code means writing and debugging classes, and then building new classes from
them. You can get a lot of work done in a relatively short time by using as many existing
classes as possible — either those of your own design, or those from Java's rich class
library.

To demonstrate how to inherit and build on an existing class, Listing 6-3, DateShow.java,
adds a display() method to Java's Date class.

Listing 6-3
DateShow.java
001: import java.util.Date; // Import the Date class
002:
003: // Extend the imported Date class
004: class NewDate extends Date {
005: public void display() {
006: System.out.println(toString());
007: }
008: }
009:
010: // Use the NewDate class
011: class DateShow {
012: public static void main(String args[]) {
013: NewDate today = new NewDate(); // Construct NewDate object
014: today.display(); // Call the new display() method
015: }
016: }

The sample program imports the Date class as before. It then extends Date by declaring a
new class like this:

class NewDate extends Date {
 ...
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

75

The NewDate class inherits all members (instance variables and methods) from Date.
However, the extended class does not inherit any constructors. To its inheritance,
NewDate adds a display() method, which uses the println() method to display the object's
date in string form. Take a close look at the statement that makes this happen (see line
006):

System.out.println(toString());

In past examples, you called methods such as toString() in reference to an object such as
today. Because this statement is in the NewDate class, and because that class inherits
Date's members, the statement can call the inherited toString() method directly.

To create and use an instance of the extended class, the sample program's main() method
constructs a NewDate object and then calls the display() method in reference to that
object:

NewDate today = new NewDate();
today.display();

Because constructors are not inherited, the first line must now refer to the extended class
name, NewDate, to construct the object. NewDate() is known as a default constructor,
which is implicitly created by Java if the program itself does not declare one. The second
statement calls our new display() method, which in turn calls the inherited toString()
method for the today object, thus printing today's date and time.

Note

An extended class efficiently reuses its inherited members. Only one copy
of any method ever exists in memory, no matter how many classes extend
other classes and no matter how many objects you construct. Each object
has its own copies of any instance variables, but all objects of a class
share the class's code. Objects don't contain code — they associate code
with their instance variables.

Subclass and Superclass
An extended class such as NewDate in the preceding sample program is called a subclass.
The class from which it is extended is called the superclass. Other object-oriented
languages such as C++ and Object Pascal use the terms ancestor and descendent to
describe class relationships — and you might also come across the term base class,
which is analogous to a superclass in Java.

Any subclass can be used as a superclass, and there is no practical limit to the number of
subclasses you can create for any class. You can import a class, extend it, import the
resulting subclass, extend it again, and so on. In fact, most classes you import into a
program are already extended from several other classes. All Java classes, including those
that you create, are extended from a superclass called Object. All classes, and all objects,
are therefore related through the Object class. Among other members, the Object class
declares a method, toString(), that you may call for any object.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

76

Class Methods
Class methods, as you have seen in the sample programs presented so far, execute
statements. They are analogous to subroutines in conventional programming languages
such as BASIC. Methods can declare local variables and they can call other methods. As
you know, every stand-alone Java application must have a main() method in a class
named the same as the program's source code file.

Programming with Methods
A method can be a function that returns a value. Declare the return-value's data type
before the method's name, and list any parameters and their types in parentheses. Here's a
sample method that declares three integer parameters and returns an integer value:

int sum(int a, int b, int c) {
 return a + b + c;
} // <–– no semicolon here!

In the method, a return statement passes back the sum() function's integer result — the
sum of the three int parameters, a, b, and c, which are separated by commas in the
method's declaration. Notice that there is no semicolon after the method's closing brace.
Another statement might call sum() like this:

int k = sum(x, y, 25); // k = x + y + 25;

If a method returns no value, declare it as type void. This is typically done for methods
that perform some action rather than calculate a value. For example, the following
function returns no value and requires no parameter arguments:

void doSomething();

Call the method simply by writing its name in statements such as

doSomething(); // Call method
o.doSomething(); // Call method for an object

Note

Reminder: In this text, empty parentheses indicate a function name. You
know that sum() is a function, but count is probably a variable.

Listing 6-4, Methods.java, demonstrates how to declare and use methods in a program.

Listing 6-4
Methods.java
001: // Method demonstration class
002: class MethodClass {
003: int sum(int a, int b, int c) {
004: return a + b + c;
005: }
006: double product(double x, double y) {
007: return x * y;
008: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

77

009: void showErrorMessage(int code) {
010: switch (code) {
011: case 1:
012: System.out.println("Error 1: Deep trouble!");
013: break;
014: case 2:
015: System.out.println("Error 2: Deeper trouble!");
016: break;
017: default:
018: System.out.println("Unknown code: Situation hopeless");
019: }
020: }
021: }
022:
023: // Main program class
024: class Methods {
025: public static void main(String args[]) {
026: // Create demo object of the MethodClass class
027: MethodClass demo = new MethodClass();
028:
029: // Call demo object's sum() method
030: int k = demo.sum(10, 25, 16);
031: System.out.println("sum = " + k);
032:
033: // Call demo object's product() method
034: double f = demo.product(3.14159, 4.5);
035: System.out.println("product = " + f);
036:
037: // Call demo object's showErrorMessage() method
038: demo.showErrorMessage(1);
039: demo.showErrorMessage(2);
040: }
041: }

The sample program's MethodClass declares three methods: sum(), product(), and
showErrorMessage(). The first two methods return int and double values respectively.
The third returns void — that is, no value. To call the methods, the program first
constructs an object, demo:

MethodClass demo = new MethodClass();

Next, the program calls each method in reference to the object. A period (sometimes
called dot notation) shows the association with the object and the class method names:

int k = demo.sum(10, 25, 16);
double f = demo.product(3.14159, 4.5);
demo.showErrorMessage(1);

Static Methods
Methods may be called in reference to a class, rather than to an object, in which case the
method declaration is prefaced with the key word static. For example, the main() method
is static so it can be called without having to construct an object of its class:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

78

public static void main(String args[]) { ...

The main() method is also declared public, which makes it available to other classes. (I'll
cover this topic along with other access rules in Chapter 11, "Abstract Classes.") Static
methods are of limited use. Because they are not called in reference to objects, they may
not access instance variables in the class. For example, the following statements illustrate
a common mistake:

class DontDoThis {
 int i; // instance variable
 public static void main(String args[]) {
 i = 10; // ???
...
}

These statements do not compile because static methods may not use instance variables
— there is no instance of the DontDoThis class, and therefore, the instance variable i is
not available to the static method.

Serializing Objects
Like methods, data members in a class can also be static. One good use for this is to
create serialized objects, which automatically assign themselves unique values that might
be used for identification purposes. Listing 6-5, Serial.java, demonstrates how to create
such a class.

Listing 6-5
Serial.java
001: class Serialized {
002: static private int nextSerialNum; // Initialized to 0
003: private int serialNum;
004: // Construct a Serialized object
005: Serialized() {
006: // Increment and assign serial number to an object
007: serialNum = ++nextSerialNum;
008: }
009: // Show the object's serial number
010: public void showSerialNumber(String name) {
011: System.out.println(name + "'s serial number = " + serialNum);
012: }
013: }
014:
015: class Serial {
016: public static void main(String args[]) {
017: Serialized obj1 = new Serialized();
018: Serialized obj2 = new Serialized();
019: Serialized obj3 = new Serialized();
020: obj1.showSerialNumber("Object 1");
021: obj2.showSerialNumber("Object 2");
022: obj3.showSerialNumber("Object 3");
023: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

79

024: }

The Serialized class declares two data items at lines 002 and 003. Both are private to the
class and therefore can be used only by the class's methods (but see "Packages and
Access Rules" in Chapter 13, "Packages," for an exception to this rule). The first,
nextSerialNum, is also declared to be static, and it is therefore used in reference to the
class. Every object of the class has its own copy of the non-static instance of the
serialNum integer; but no object contains a nextSerialNum variable.

In the class constructor (see lines 005-008), each new object's serialNum instance
variable is given the next increment of the class's static nextSerialNum value. In this way,
each object is given successive serial numbers, as demonstrated by the program's output,
produced by creating three Serialized objects and calling the showSerialNumber()
method:

Object 1's serial number = 1
Object 2's serial number = 2
Object 3's serial number = 3

Overloaded Methods
A class may declare more than one method using the same name as long as each
declaration differs by at least one parameter. This technique is called overloading, and it
is useful for creating sensible code that can accept a variety of arguments. It's a handy
tool particularly for creating methods that are named the same but can operate on
different types of data.

Listing 6-6, Overload.java, demonstrates how to declare, implement, and use overloaded
methods.

Listing 6-6
Overload.java
001: class DemoClass {
002: // Method #1
003: void show(int x) {
004: System.out.println("int x = " + x);
005: }
006: // Method #2
007: void show(double x) {
008: System.out.println("double x = " + x);
009: }
010: // Method #3
011: void show(char x) {
012: System.out.println("char x = " + x);
013: }
014: }
015:
016: class Overload {
017: public static void main(String args[]) {
018: DemoClass myObj = new DemoClass(); // Create object

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

80

019: myObj.show(123); // Call show() #1
020: myObj.show(3.14159); // Call show() #2
021: myObj.show('Q'); // Call show() #3
022: }
023: }

DemoClass declares three methods, all named show(). The methods differ only in the
types of parameters. As the sample program's main() method demonstrates, Java decides
which method to call based on the type of argument passed to the method's int, double, or
char parameters. Running the program displays

int x = 123
double x = 3.14159
char x = Q

To be properly overloaded, the methods must be named the same and must differ in at
least one parameter's data type (not its name; its type). As long as they are properly
overloaded, the methods may return different types, but the return type alone cannot be
changed without also changing the type of at least one parameter.

Understanding Scope
Variables declared in a method are available only to that method. This concept is called
scope. Variables declared in a class are available to all methods in the class. Any local
variables declared in methods, however, take precedence over any variables of the same
names in the class. For example, consider this class:

class AnyClass {
 int k = 20;
 void anyMethod() {
 int k = 10; // Local variable k hides instance variable k
 System.out.println(k); // Displays 10
 }
}

AnyClass declares an instance variable, k. Because anyMethod() also declares k, the
output statement prints 10. If you delete the declaration of the local variable, the program
displays 20 because anyMethod() then refers to the variable in the outer (class) scope.

It's useful to think of scope as a series of nested rooms with one-way mirrors. Inside any
room, you can see out to other rooms, but outside you can't peer in through the windows.
Consequently, one method's local variables do not conflict with another method's. For
example, two methods may declare integer variables named i without conflict:

class AnyClass {
 public static void f1() {
 int i = 10; // Belongs to scope of f1()
 }
 public static void f2() {
 int i = 20; // Belongs to scope of f2()
 }
...

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

81

}

Tip

Choosing good identifiers helps preve nt bugs caused by accidentally
hiding variable names declared in an outer scope. In general, to avoid this
kind of trouble, it's best to use simple names such as i, j, and k only as
local variables in methods; use more descriptive names such as
accountBalance for class instance variables.

Strict Floating Point
You can perform floating point arithmetic in Java in two ways — strict and non-strict.
The default is non-strict, which is generally faster because it uses the local operating
system's floating point hardware or, perhaps, a software library. However, since not every
computer system is identical in its floating point implementations, the results of non-strict
arithmetic may differ slightly.

Usually, such differences are insignificant and can be safely ignored. However, if you
need to ensure that your floating point calculations are identical on all systems that
execute your Java programs, you can specify that system to use strict floating point. This
will cost your program some performance points, so don't do this unless you really must.

To enable strict floating point, a class, interface, or method may be declared using the
modifier strictfp. (Interfaces are introduced in Chapter 12, "Interfaces.") You may declare
an entire class or interface to use strict floating point:

strictfp class Strictly {
...
}

Or, you may similarly declare a method using the same modifier:
public static strictfp void DoStrictMath() {
 double f = 3.14159 * 0.000002;
 System.out.println("Strict output = " + f);
}

Input and Output Methods
Although the purpose of this chapter is to introduce classes and object-oriented
programming, it's useful to discuss the topics of input and output here. In order to begin
presenting more useful sample programs, we need techniques to get data into and out of
applications. Actually, output is simpler, so I'll cover that first.

Output Statements
You've already seen how to display text and other values using the println() method in
statements such as

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

82

System.out.println("\nValue of k = " + k);

This displays a string and the value of k. The special character \n precedes the string with
a new line. In general, a variable such as k may be of any data type because Java can
convert most kinds of values to strings, which you can join using plus signs as shown
here.

Calling println() this way, however, isn't always convenient, especially for displaying
multiple values. It's often better, and probably faster, to construct a string and then
display it using one output statement. Chapter 8, "String Things," discusses strings in
more detail, but Listing 6-7, OutputDemo.java, demonstrates the basic technique of using
a string for displaying relatively complex output.

Listing 6-7
OutputDemo.java
001: class OutputDemo {
002: public static void main(String args[]) {
003: StringBuffer s = new StringBuffer();
004: for (char c = 'A'; c <= 'Z'; c++) {
005: s.append(c);
006: }
007: System.out.println(s); // Displays the alphabet
008: }
009: }

The sample program constructs a StringBuffer object, using the statement at line 003.
This creates an object, s, called a mutable string, to which the program can append
characters. In this program, a for loop appends the letters A through Z to s by calling the
StringBuffer class's append() method. After constructing the string, the program displays
it with a single println() statement, which displays the alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Note

Objects of Java's String class are fixed in size and cannot be changed
(they are often called immutable strings). When a string expands or is
expected to be changed frequently, the StringBuffer class is the better
choice. Again, I'll get back to this subject in Chapter 8.

Input Statements
To input characters and strings from the keyboard, a program can call the System.in.read()
method, as Listing 6-8, InputDemo.java, demonstrates.

Listing 6-8
InputDemo.java
001: import java.io.IOException;
002:
003: class InputDemo {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

83

004: public static void main(String args[]) {
005: try {
006: // Input a single character
007: System.out.println("Type a character:");
008: char ch = (char)System.in.read();
009: System.out.println("You entered: " + ch);
010: // Throw out new line
011: while (ch != '\n')
012: ch = (char)System.in.read();
013: // Input a string
014: System.out.println("Type a string:");
015: StringBuffer s = new StringBuffer();
016: while ((ch = (char)System.in.read()) != '\n')
017: s.append(ch);
018: System.out.println("You entered: " + s);
019: } catch (IOException e) {
020: System.out.println("Input error detected");
021: }
022: }
023: }

Note

The sample program inputs a class named IOException and uses
exception handling to trap any input errors that might occur. I'll cover
exceptions in the next chapter, but they are necessary here because Java
requires input statements to handle their own errors.

Use the following statement to read a single character from the keyboard:

char ch = (char)System.in.read();

Because the user must press Enter after typing the character, follow this statement with a
similar one to throw out the @@sp\n@@sp new line character:

while (ch != '\n')
 ch = (char)System.in.read();

To read a string, you can use a StringBuffer object and a while loop such as the following,
which builds a string from characters typed at the keyboard:

StringBuffer s = new StringBuffer();
while ((ch = (char)System.in.read()) != '\n')
 s.append(ch);

The foregoing techniques provide only simple input and output, adequate only for
reading and writing text in simple programs. Chapter 24, "Input and Output Techniques,"
covers more sophisticated methods for input, output, and file handling.

Cleaning Up Class Objects
Java automatically garbage collects objects when they are no longer in use. For example,
when a method ends, any objects that it created are eventually destroyed, and their

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

84

memory space is freed. This keeps memory free of unused objects and helps make
available as much free memory as possible for creating other objects. You don't need to
perform any special actions to use Java's garbage collection — it is fully automatic and
runs in a background thread that does not interfere with your program.

Sometimes, however, it is necessary to perform one or more actions just before an object
is deleted. To perform such cleanup activities, create a finalize() method:

protected void finalize() {
...
}

However, finalize() is not a good place to perform tasks such as saving data in a file. A
finalize() method is never required in Java, and most important, is not guaranteed to be
called. It will be called only if an object of its class is deleted, and this will occur only if
Java needs to garbage collect objects to free up some memory. As Listing 6-9,
FinalDemo.java, demonstrates, you can therefore never rely on your finalize() methods
being called.

Listing 6-9
FinalDemo.java
001: class AnyClass {
002: AnyClass() {
003: System.out.println("Inside AnyClass() constructor");
004: }
005: protected void finalize() {
006: System.out.println("Inside AnyClass() finalize method");
007: }
008: }
009:
010: class FinalDemo {
011: public static void f() {
012: System.out.println("Start method f()");
013: AnyClass obj1 = new AnyClass();
014: System.out.println("End method f()");
015: }
016: public static void main(String args[]) {
017: System.out.println("Start method main()");
018: f();
019: AnyClass obj2 = new AnyClass();
020: System.out.println("End method main()");
021: }
022: }

The sample program also shows the difference between a class constructor and finalize().
The constructor at line 002 is named the same as the class and has no return type, not
even void. It is called when an object of the class is created with a statement such as

AnyClass obj1 = new AnyClass();

The finalize() method at line 005 has the return type void (it returns nothing) and is
typically made protected (see Chapter 11), because it is never called by a program

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

85

statement. Running the program shows that, despite this declaration, finalize() is never
called:

Start method main()
Start method f()
Inside AnyClass() constructor
End method f()
Inside AnyClass() constructor
End method main()

This happens because in such a simple program, plenty of memory is available, and the
program runs for only a short time. When function f() (see line 011) ends, the AnyClass
obj1 object (line 013) is no longer in use, and it is subject to garbage collection. However,
that action is unlikely to occur in this simple program, and therefore, finalize() is never
called.

Note

C++ programmers and those who know other object-oriented languages
such as Object Pascal should be careful not to equate Java's finalize()
method with a destructor. In C++, for example, class destructors are
guaranteed to be called when objects are deleted. In Java, because
objects are never explicitly deleted, but are garbage collected
automatically, destructors are not needed.

Summary
* Java is completely object-oriented. Every piece of data and every action take

place in the context of one or more classes.

* A class encapsulates data (instance variables) and code (methods). Programming
with classes encourages the reuse of debugged code, which potentially simplifies
software development.

* A class constructor is a method named the same as the class but with no return
type. Constructors initialize objects of classes. A class may declare a cleanup
method named finalize(), which Java calls if it garbage collects an object of the
class. This, however, is not guaranteed to happen.

* To use a class, it is usually instantiated with the new operator. This creates an
object of the class. You may create as many objects of a class as you need. Each
object has separate copies of any non-static instance variables declared in the
class. All objects of a class, however, share the class's methods.

* A source code module can import classes from Java's packages using import
statements. There are numerous classes such as Date in the java.util package from
which to choose. You can create your own classes, but always check whether an
existing class is available before reinventing the wheel.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

86

* Classes may extend other classes. The original class is called the superclass. Its
extension is called the subclass. Any subclass may be used as a superclass that
may be further extended. All classes have the Object class as their most distantly
related superclass.

* Methods are declared and implemented in a class. They may return a value of any
type or void (no value). Methods may be called in reference to an object of a class.
Static methods, however, may be called in reference to the class itself, but static
methods may not use any of the class's instance variables because there is no
instance, or object, of the class in this case.

* Classes may also declare static data, for example, to create serialized objects.

Chapter 7 Exception Handling
One of the keys to writing robust code is to catch errors caused by all possible
exceptional conditions. In conventional programming, satisfying that requirement can be
extremely difficult, and programmers tend to either put off writing error handling code,
do it badly, or ignore the subject altogether.

Java is different. It provides exceptions for adding error handling to a program as you
write the code. As you learn in this chapter, an exception is an object that is thrown to
indicate an extreme event such as a file not found or incorrect user input. Programs catch
exception objects so they can respond gracefully to unplanned events. The result is battle-
tested code that handles all possible errors.

In This Chapter

* Exception terminology

* An introduction to exceptions

* Programming with exceptions

* Class library exceptions

A Few Good Terms
Java exceptions come with their own terminology and concepts. Following are some
overviews that will help you to read and understand this chapter:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

87

* An exception is just that — an exceptional condition that requires special handling.
Exceptions are best used to handle errors that might naturally be expected to
occur. For example, Java's RandomAccessFile class throws
FileNotFoundException to indicate an attempt to open a file that doesn't exist,
perhaps because the user mistyped the filename.

* Checked exceptions are so named because the Java compiler checks whether
methods throw only exceptions that are listed for those methods. Most of the
exceptions you deal with in writing Java applications and applets are checked
exceptions.

* Unchecked exceptions are those that are thrown due to unexpected programming
errors. For example, accessing an array with an out-of-bounds index value causes
Java to throw an IllegalArgumentException. Unchecked exceptions should be
handled by fixing the source code so the problem never occurs in the first place.

* To create an exception, a statement throws an object that describes the nature of
the exceptional condition. The object must be a subclass of the Throwable class or,
preferably, it should extend a class such as Exception or RuntimeException.

* To handle an exception, a statement catches an exception object that another
statement throws. Any method may throw one or more exceptions to indicate
various exceptional conditions.

* Programs prepare to catch exceptions by trying one or more statements that are
known to throw exceptions for specific types of errors. In general, to use
exceptions, you simply try one or more methods and you catch any exceptions
those methods throw.

* Java programs run in threads, a subject for Chapter 19, "Threaded Code."
Unhandled exceptions terminate the current thread, but beforehand, the thread's
ThreadGroup gets one final crack at dealing with the problem, or at least reporting
it to the user. In most cases, unhandled exceptions cause the program to end
abruptly, indicating a serious problem that needs immediate attention.

Introducing Exceptions
The basic mechanism for handling exceptions is the try block. This is a brace-delimited
block of one or more statements preceded with the keyword try. The following template
shows the format of a try block:

try {
 // statements that might throw an exception
} catch(exceptionClass exObject) {
 // handle the exception
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

88

A try block is always followed by at least one catch block, which dictates the program's
response. It can also be followed by a finally block, but more on that later (see
"Programming with Exceptions"). Inside the try block, the program can call methods or
execute statements that might throw one or more exception objects. The catch block lists
these exception objects, and the code in that block is expected to take whatever evasive
action is necessary to deal with the problem.

A single try block may catch multiple types of exceptions. For example, the following
incomplete code fragment catches three types of exception objects:

try {
 // statements that might throw an exception
} catch (EOFException e) {
 // handle end–of–file exception
} catch (FileNotFoundException e) {
 // handle file–not–found exception
} catch (IOException e) {
 // handle all other I/O exceptions
}

The EOFException and FileNotFoundException classes are each subclasses of
IOException. The preceding code tries one or more statements that might throw these
types of exceptions. After the try block, catch blocks handle the first two specific types of
I/O exceptions. The last catch block handles all other IOException class errors.

Handling All Exceptions
Although it's possible, it is not usually a good idea to attempt catching all possible types
of exception objects. For example, the following incomplete code fragment catches all
exception objects of the Throwable class:

try {
 // Call method(s) which might throw an exception
} catch (Throwable e) { // ???
 System.out.println(e.getMessage());
}

Because all exception objects are of classes that extend Throwable, the program catches
every possible exceptional condition. This includes, however, any unchecked exceptions
that indicate a programming error such as an out-of-bounds array index. For this reason,
the preceding technique, while technically acceptable, is not recommended.

Rather than catch Throwable objects, to handle most exceptions, you can catch Exception
class objects, which are direct descendants of Throwable and are intended for application
use. For example, the code

try {
 // Call method(s) which might throw an exception
} catch (Exception e) {
 System.out.println(e.getMessage());
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

89

catches most types of exceptions, but permits other more sensitive types of the Throwable
and Error classes (another Throwable subclass) to pass on to the Java virtual machine for
proper handling.

In most cases, however, rather than attempt to catch all exceptions (except, perhaps, in
small test programs), it is almost always best to catch objects of specific classes
descended from Exception. Each Java method, including your own, specifies the types of
checked exceptions it might throw. Your code needs to respond to those and only those
types of exceptions. Likewise, your own code should specify the exceptions it might
throw so that users of that code can catch all possible boundary conditions and errors.

Note

The Java compiler is able to detect that your code, or the virtual machine,
handles exceptions that might be thrown. You will receive errors from the
compiler if it determines that a possible exception is not handled. For
example, if you call a method that might throw a specific kind of exception,
the compiler will complain, "Exception X not caught or declared by Y,"
where X is the exception class name and Y is your method that calls the
exception-throwing method. When you see this error, you can insert the
method call in a try block and provide a catch block that handles the
reported exception. Alternatively, you can declare your own method as
one that throws an exception of this type. This pushes, but does not
eliminate, responsibility for handling the exception onto the caller of your
method.

Using Exceptions
When a statement in a try block causes an exception to be thrown, the rest of the
statements in that try block do not execute. Instead, the program jumps immediately to a
catch block statement that either matches the declared exception class exactly or matches
a superclass of the thrown exception object. Take a look at an example.

try {
 method1(); // always executes
 method2(); // does not execute if m1 throws exception
 method3(); // does not execute if m1 or m2 throw an exception
} catch (Exception e) {
 System.out.println(e.getMessage());
}

If method1() throws an exception, then method2() and method3() are not called, and the
program immediately jumps to the catch block statement, which in this example calls the
Exception class getMessage() method and (we hope) prints an intelligent message about
what happened. Similarly, method3() does not execute if method1() or method2() throws
an exception. If no exceptions are thrown, the catch block statement does not execute.

In addition to these rules, if the try block ends abnormally — that is, if an associated
catch block does not handle the exception object — then the method containing this try

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

90

block immediately returns. Any return value is uninitialized. In that event, the exception
stays alive, and it must eventually be handled, or the thread (and most likely the program)
terminates. If the try block ends normally — that is, if no exceptions occur or if any are
handled by a catch statement — then the program continues running after the last catch
block associated with this try.

It is also possible for a catch block to handle an exception and then rethrow the object to
pass it upward in the chain of method calls that led to a problem. Rethrowing an
exception is an important technique that allows a program to indicate a problem but pass
responsibility for handling that problem to a higher authority. For example, the following
fragment catches most checked exceptions since these are all descended from the
Exception class:

try {
 // call method(s) which might throw an exception
} catch (Exception e) {
 System.out.println("Trouble in paradise!");
 throw e; // Rethrow the exception
}

As mentioned, it is generally not a good idea to catch all exceptions this way. However,
because the throw statement rethrows the exception, this code does not prevent another
exception handler from dealing with a specific problem.

Programming with Exceptions
In addition to catching exceptions thrown by Java's class library methods, you can also
create your own exception classes and objects. It's a good idea to do this as you develop
your programs — don't put off error-handling until the last moment! It's also good to use
exception handling for all errors and exceptional conditions rather than attempt to create
your own error protocols such as returning special values from methods.

To demonstrate how to create your own exception classes and objects, Listing 7-1,
ExceptDemo.java, implements a power() method that can raise any double value to any
double exponent value. Although the Math class already provides a similar method,
pow(), that method does not generate exceptions for illegal values such as a zero base and
a negative exponent, or a negative base and a fractional exponent (trying to raise –4, for
example, by a power of 1.5). The sample program adds exception handling to a power()
method that calls Math.pow() to do most of the hard work of the calculation.

Listing 7-1
ExceptDemo.java
001: class NewMathException extends Exception {
002: // Constructor
003: public NewMathException(double b, double e) {
004: super("Domain error: base = " + b + " exp = " + e);
005: }
006: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

91

007:
008: final class NewMath {
009: // Prevent instantiation of class
010: private NewMath() { }
011: // Return b raised to the power of e
012: public static double power(double b, double e)
013: throws NewMathException {
014: NewMathException error = new NewMathException(b, e);
015: if (b > 0.0) return Math.pow(b, e);
016: if (b < 0.0) {
017: Double d = new Double(e);
018: double ipart = d.intValue();
019: double fpart = e – ipart;
020: if (fpart == 0) {
021: if ((ipart % 2) != 0) // i.e. ipart is odd
022: return –Math.pow(–b, e);
023: else
024: return Math.pow(–b, e);
025: } else
026: throw error;
027: } else {
028: if (e == 0.0) return 1.0;
029: if (e < 1.0) throw error;
030: return 0.0;
031: }
032: }
033: }
034:
035: class ExceptDemo {
036: public static void main(String args[]) {
037: if (args.length < 2) {
038: System.out.println("Specify value and exponent");
039: System.out.println("ex. java ExceptDemo –4 1.5");
040: }
041: else
042: try {
043: double base = new Double(args[0]).doubleValue();
044: double exponent = new Double(args[1]).doubleValue();
045: double result = NewMath.power(base, exponent);
046: System.out.println("Result = " + result);
047: } catch (NewMathException e) {
048: System.out.println(e.getMessage());
049: }
050: }
051: }

Through the use of exceptions, running the program with illegal values causes it to
display an error message showing the values that caused the problem:

java ExceptDemo –4 1.5
Domain error: base = –4.0 exp = 1.5

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

92

The sample listing begins with a class declaration (lines 001 to 006) that creates a new
exception type, extended from Java's Exception class. When creating your own
exceptions, you'll often want to declare a similar class to report special conditions and
their associated values. For instance, in this case, we want to report not only that an error
occurred, but also what values caused a problem. To do that, the program extend the
Exception class with the declaration

class NewMathException extends Exception {...

In the NewMathException class, a constructor takes as arguments two double values:

public NewMathException(double b, double e) {...

To use the new exception class, the program's NewMath class declares the power()
method and informs the world that this method might throw an object of the
NewMathException type (see lines 012 and 013):

public static double power(double b, double e)
 throws NewMathException {...

Because power() states that it might throw a NewMathException object, any statements
that call power() must be in a try block, or they must themselves exist in a method that
also throws NewMathException. This is a good example of a checked exception — one
that the compiler checks is thrown and caught properly. Because the method explicitly
declares an exception class, attempts to execute statements such as

double x = NewMath.power(1.2, 1.3); // ???

cause the compiler to complain that the NewMathException is neither declared nor
caught. Compiling the preceding statement produces this output:

ExceptDemo.java:49: unreported exception
 NewMathException; must be caught or declared to be thrown
double x = NewMath.power(1.2, 1.3); // ???
 ^

By the way, notice how the caret character on the last line points to the place in the
source code where the error occurs. To fix the problem, rather than call power() in a try
block, a method could declare this same exception, and in this way pass any thrown
objects back up the method-call chain that led to the exception. For example, you could
write a method f() as follows:

public void f() throws NewMathException {
 double x = NewMath.power(1.2, 1.3);
 ...
}

Now it is okay to call NewMath.power() without using a try block because f() explicitly
states that it might throw a NewMathException object. If power() throws an exception, f()
immediately returns to its caller and passes responsibility for handling the exception to
that caller. That code might be written like this:

try {
 f();
} catch (NewMathException e) {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

93

 System.out.println(e.getMessage());
}

A method may state that it throws more than one type of exception class object. Separate
multiple exception-class names with commas after the throws key word. For example,
this declaration of a method named test() states that it might throw one of three types of
exceptions:

public void test()
 throws NewMathException,
 BadEntryException,
 IncompleteException {
...
}

I just made up the last two exception names to show the format. Try always to declare
your methods this way along with all the exceptions they throw. This will help
incorporate error handling into your code and also help the compiler ensure that all
exceptions are properly handled.

There are two more important points to remember about try blocks and exceptions:

* If any statement in the try block throws an exception, none of the subsequent
statements in that block are executed.

* If any statement in the try block throws an exception and that exception is not
caught, the method that executed the try block immediately returns to its caller.

The second point might cause a method to skip critical code that must execute regardless
of whether an exception is thrown. The next section explains how to write this type of
critical code using a finally block.

Finally Block
As I just mentioned, if a try block detects an exception and that exception is not handled,
the method that executed the try block immediately returns. Technically speaking, this
happens because the try block ends abnormally, which causes the block that executes the
try also to end. To deal with situations that require executing statements regardless of
whether an exception is thrown or caught, insert a finally block after the try and any catch
statements.

Listing 7-2, FinallyDemo.java, demonstrates the purpose and effect of a finally block
following a try block. The sample program tests three situations: throwing no exceptions,
throwing an exception of a predefined Java class, and throwing an object of a class
defined in the program itself. Running the program shows what you can expect from a
finally block and also shows what happens to any unhandled exceptions.

Listing 7-2
FinallyDemo.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

94

001: // Exception class
002: class ThrowMe extends Exception {
003: ThrowMe() { }
004: ThrowMe(String s) {
005: super(s);
006: }
007: }
008:
009: class FinallyDemo {
010: // Test method –– pass 0, 1, or 2 for different exceptions
011: static void testMethod(int n) throws Exception, ThrowMe {
012: switch (n) {
013: case 1:
014: throw new Exception("Unhandled exception");
015: case 2:
016: throw new ThrowMe("To the wolves");
017: default:
018: return;
019: }
020: }
021: // Main program
022: public static void main(String args[])
023: throws Exception {
024: int argument = 0;
025: if (args.length > 0)
026: argument = Integer.parseInt(args[0]);
027: try {
028: testMethod(argument);
029: } catch (ThrowMe e) {
030: System.out.println("ThrowMe: " + e.getMessage());
031: } finally {
032: System.out.println("Finally statement");
033: }
034: System.out.println("Statement after try block");
035: }
036: }

After compiling the program, run it three times by typing the following commands:

java FinallyDemo
java FinallyDemo 1
java FinallyDemo 2

The first command shows what happens when no exceptions are thrown. On screen, the
text shows that, in the absence of any exceptions, the main() method's finally block
executes as does the statement at line 035 following the try block:

Finally statement
Statement after try block

This last statement is significant because its execution proves that the preceding try block
ended normally. Because of this, we know that main() did not return prematurely due to

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

95

an exception. The second test, which causes testMethod() at lines 011-020 to throw an
Exception object, displays these results:

Finally statement
Exception in thread "main" java.lang.Exception: Unhandled exception
 at FinallyDemo.testMethod(FinallyDemo.java:20)
 at FinallyDemo.main(FinallyDemo.java:35)

The output shows what happens when the program fails to catch an exception. Even so,
the finally block, indicated by the first line, is executed, ensuring that any critical code
runs regardless of even this serious problem.

Note

You should normally not throw objects of the Exception class, as done for
demonstration purposes in FinallyDemo.java. Normally, programs should
extend Exception to create new exception classes. I used Exception in this
unusual way to force an unhandled exception condition — and it is to
Java's credit that this is difficult to do!

The third and final experiment shows what happens when an exception is thrown and
caught in a normal fashion. On screen you see

ThrowMe: To the wolves
Finally statement
Statement after try block

The first line indicates that the ThrowMe class object is caught and handled properly (see
line 029). Again, because the exception was handled, the try block ends normally and
main() does not end prematurely as it did with the prior test with an unhandled exception.
Thus, the "Statement after try block" executed normally. In addition, the finally block is
also executed, again ensuring that critical code is always run.

Tip

A finally block's statements run even if the associated try block executes a
return, break, continue, or throw statement. You can really trust a finally
block to run regardless of what occurs in its try block.

Nested try Blocks
You may nest try blocks inside each other to simplify some kinds of error handling.
Generally speaking, however, more than two levels of nesting may be more confusing
than helpful. But the technique might be necessary to respond to an exception on more
than one level — an inner try block, for example, may handle a specific kind of error that
is additionally handled in a more general way in an outer try block. Listing 7-3,
NestedTry.java, demonstrates how to program nested try blocks that each respond to the
same exception object in different ways.

Listing 7-3
NestedTry.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

96

001: class NewException extends Exception { }
002: class NewNewException extends NewException { }
003:
004: class NestedTry {
005: public static void test() throws NewNewException {
006: throw new NewNewException();
007: }
008: public static void main(String args[]) {
009: try {
010: try {
011: test();
012: } catch (NewNewException e) {
013: System.out.println("Inner try block exception caught");
014: throw e; // Rethrow exception
015: }
016: } catch (NewException e) {
017: System.out.println("Outer try block exception caught");
018: }
019: }
020: }

The program begins by declaring two new exception classes. NewException is the more
general of the two classes. NewNewException represents a more specific kind of error.
(A real world example of this technique might be a file system that reports a general file-
input error but also reports the specific cause of the problem, such as a data element in
the wrong place.) By the way, these two classes are examples of what I call name-only
exceptions — they contain no new programming or instance variables. Their class names
are all that indicate the type of exception and, therefore, the nature of a specific problem.

Method test() at line 005 throws the more specific type of exception. The program's
main() method implements a two-level try block. In the inner block, the program calls
test(), which throws the specific exception, caught by the catch statement at line 012. To
handle the same exception in a more general way, line 014 rethrows the exception object.
This causes the inner try block to end abnormally, also causing the outer block's catch
statement at line 016 to catch NewException (the general case class). This works because
the more specific NewNewException class extends NewException. Thus a
NewNewException object is simply a more specific kind of NewException object.
Running the program proves that the exception is caught in each case:

Inner try block exception caught
Outer try block exception caught

Tracing the Stack
Properly understanding why an exception occurred often requires knowing the order in
which methods were called that led to the exception being thrown. A useful method in the
Exception class can print this information for you. It's particularly effective as a
debugging tool.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

97

Listing 7-4, StackTrace.java, shows how to display the line numbers of the statements
that lead to an exception. You might use a similar technique to trace the origin of an
unhandled exception that unexpectedly terminates a program.

Listing 7-4
StackTrace.java
001: class NewException extends Exception { }
002:
003: class StackTrace {
004: // Cause an exception to be thrown
005: public static void test() throws NewException {
006: throw new NewException();
007: }
008: // Main program––catch the thrown exception
009: public static void main(String args[]) {
010: try {
011: test();
012: } catch (NewException e) {
013: System.out.println("NewException caught. Tracing stack:");
014: e.printStackTrace(); // Trace exception origin
015: }
016: }
017: }

The program declares a name-only exception, NewException, extended from the
Exception class. An exception of that class is thrown in a test() method (see line 006).
The program's main() method calls test() in a try block and catches the thrown exception
object at line 012. The last statement in catch displays a trace of the method-call stack.
Running the program displays

NewException caught. Tracing stack:
NewException
 at StackTrace.test(StackTrace.java:12)
 at StackTrace.main(StackTrace.java:17)

The first line is printed by the program's output statement at line 013. The subsequent
lines are printed by the Exception class's printStackTrace() method. They show the class
name, the method called, and the relevant line numbers (subtract six to match them to the
printed listing, and see the following note). This is obviously great information for
tracing the origin of any exceptions received during a program run.

Note

The reported line numbers do not match those in the printed listings
because of extra header comments removed to save room here. As
mentioned, to find the correct lines, subtract six from the stack trace line
numbers. Or, view the actual source code file for this listing as explained
in Chapter 2.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

98

Class Library Exceptions
Methods in Java's packages use exceptions extensively, and programs are expected to
respond to the conditions that the exceptions report. As you read through this book and
Java's online documentation, you will discover notes that method so-and-so throws an
exception of class such-and-such. To provide error handling, in most cases, you can
simply call the method from within a try block, followed by one or more catch statements
that handle the listed exception classes.

It's important, however, to also understand how Java organizes its exception classes. The
following overviews will help you to use exceptions correctly and avoid some common
mistakes.

Exception Class Hierarchy
All exception classes extend Throwable, a class in the java.lang package (see Figure 7-1).
Throwable descends directly from Object, the lowliest of Java classes. Objects of
Throwable subclasses contain at least these two items:

* A string that describes the exceptional condition

* A snapshot of the execution stack, which as mentioned, you can use to print a
trace of method calls that help locate the origin of a problem

Figure 7-1
All exception classes descend from Throwable.

insert fg0701.jpg

The diagram shows that two main classes, Error and Exception, extend Throwable.
Understanding the distinction between these two subclasses is vital for properly creating
exception handlers in your code.

Error and Exception Classes
Exceptions of classes that extend Error are serious in nature, usually involve a system
problem such as a stack overflow, and are unchecked. Following is a list of Error's
subclasses.

***Production: Please arrange in multiple columns to conserve space. Thanks. ***

AbstractMethodError

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

99

ClassCircularityError

ClassFormatError

ExceptionInInitializerError

IllegalAccessError

IncompatibleClassChangeError

InstantiationError

InternalError

LinkageError

NoClassDefFoundError

NoSuchFieldError

NoSuchMethodError

OutOfMemoryError

StackOverflowError

ThreadDeath

UnknownError

UnsatisfiedLinkError

UnsupportedClassVersionError

VerifyError

VirtualMachineError

***Production: End multi-column list. Thanks. ***

There is never any good reason for an application to extend the Error class for its own
exceptions. Technically, Java permits you to extend Error, and it also permits programs to
throw and catch these types of exceptions, but doing so is considered poor programming
for several reasons:

* Error exceptions are unchecked. The compiler does not verify that methods
declare unchecked exceptions, nor that they are caught in a try–catch block. By
extending Error, you sidestep one of the more helpful features of the Java
compiler that ensures your code properly throws and handles exceptions.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

100

* Methods that throw unchecked exceptions do not need to declare them in a throws
clause, and therefore there is no easy way except by reading every statement to
know what exceptions the method might throw.

* Catching Error exceptions, while on rare occasion useful, is also not usually good
programming because this may lead to system problems — such as attempting to
continue running after an internal error is detected due to a bug in a Java byte-
code interpreter.

Instead of attempting to extend Error, applications and applets should extend the
Exception class for their own error handling. These types of exceptions are checked — in
other words, methods that throw them must declare them in a throws clause, and the
compiler checks that all such exceptions are caught in catch statements. By basing your
exceptions on the Exception class, you create good error handling logic in your code.

Note

If an Error exception occurs, it usually terminates the program. Because
you can't do much to prevent this unhappy occurrence, I don't describe
each type of Error class here. For example, a VirtualMachineError
exception indicates that the Java interpreter has a problem, and there's
nothing you can do about that since your code may be executing on a
computer somewhere halfway around the world. But don't be overly
concerned. It is highly unlikely that your program will suffer from Error
exceptions. However, there are two "exceptions" to that comment — one,
an OutOfMemoryError might occur due to improper creation of too many
objects that can't be garbage collected, and two, a StackOverflowError
might indicate a runaway recursion of a method that calls itself repeatedly.
These problems are likely caused by programming mistakes; the others
listed here are extremely unlikely to occur.

RuntimeException Class
Another subclass, RuntimeException, extends the Exception class (refer back to Figure 7-
1). These types of exceptions, while less serious than those of Error subclasses, typically
indicate programming mistakes that need to be resolved in the source code. For example,
ArrayStoreException is thrown if the program attempts to insert an object of an incorrect
type into an array, perhaps by using a type-cast expression that the compiler allows but
the interpreter doesn't. This type of error can't be corrected at runtime.

As with Error exceptions, those of the RuntimeException class and its subclasses are
unchecked. For the same reasons mentioned for Error, applications and applets should
never extend RuntimeException, nor in most cases should these types of exceptions be
caught in try–catch blocks (unless, perhaps, by temporary code inserted for debugging
purposes). Following is a list of the RuntimeException subclasses.

***Production: Please arrange in multiple columns to conserve space. Thanks. ***

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

101

ArithmeticException

ArrayIndexOutOfBoundsException

ArrayStoreException

ClassCastException

ConcurrentModificationException

EmptyStackException

IllegalArgumentException

IllegalMonitorStateException

IllegalStateException

IllegalThreadStateException

IndexOutOfBoundsException

MissingResourceException

NegativeArraySizeException

NoSuchElementException

NullPointerException

NumberFormatException

SecurityException

StringIndexOutOfBoundsException

UndeclaredThrowableException

UnsupportedOperationException

***Production: End multi-column list. Thanks. ***

RuntimeException Subclasses
My sailing friends and I like to say that there are two kinds of sailors: those who run
aground and the fibbers who claim never to touch bottom. Likewise, there are two kinds
of programmers. Those who make boneheaded programming mistakes (I speak from
experience), and those who never tell anyone about their errors. Regardless of which
group you belong to, just in case you receive one of the exceptions in the preceding list of

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

102

RuntimeException subclasses, the following notes may help you pinpoint the cause. As
for running aground, I wrote this book not long after spending the night at a 45-degree
angle in my sailboat high and dry on a sandbar. The boat was fine but my pride suffered a
little. Don't let yours do the same if you receive one of these:

* ArithmeticException

 This exception can be reported for a variety of mathematical errors, but almost
always indicates an attempt to divide an integer value by zero. Keep in mind that
Java does not throw an exception for dividing floating point values by zero; in
that case the result is set to the special value NaN (not a number) and no
exception is thrown.

* ArrayIndexOutOfBoundsException

 This is a special extension of the more general IndexOutOfBoundsException. If
you receive this error, the most likely cause is a for or other loop that performs
one too many iterations on an array. Remember that array indexes begin with 0,
and therefore the highest legal index value is one less than the number of elements
in the array. Programmers often refer to this common mistake as an "off by one
error."

* ArrayStoreException

 An object of this type is thrown if a statement attempts to store the wrong type of
object in an array. Usually, the compiler catches this type of mistake, but it might
occur if you are using a type-cast expression to attempt to convert one type of
object or value to another.

* ClassCastException

 Java throws an object of this class if a statement attempts to subclass an object to
an inappropriate class. The Java compiler is much better now at detecting this
type of mistake, so you are unlikely to see this exception. However, if you do, it
probably is the result of a type-cast expression that attempts to convert an object
of one type into another.

* ConcurrentModificationException

 An object was modified concurrently by two processes. Improper synchronization
in threaded code could be the cause.

* EmptyStackException

 The Stack class throws this exception to indicate that an attempt was made to pop
a value from an empty stack.

* IllegalArgumentException

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

103

 Various methods throw this exception to indicate that an argument value passed to
a method is illegal. Two further subclasses of this class are
IllegalThreadStateException and NumberFormatException.

* IllegalMonitorStateException

 This exception class does not indicate a problem with your CRT, but rather that a
thread has attempted to wait on an unowned object's monitor — a term and
technique that applies to threaded code.

* IllegalStateException

 The state of the program or object does not permit this operation. You are
attempting to perform a task that cannot be completed.

* IllegalThreadStateException

 The current thread cannot fulfill a request such as attempting to start a thread that
is already running.

* IndexOutOfBoundsException

 You will probably catch and throw one of two subclasses of
IndexOutOfBoundsException rather than use objects of this super class. See
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.

* MissingResourceException

 A specified resource bundle could not be found. The cause is probably in the
program's internationalizations. For more information, look up that topic and the
abstract ResourceBundle class in Java's online documentation.

* NegativeArraySizeException

 Java throws an object of this class if a statement attempts to construct an array
using a negative size argument, which might happen when using a variable to
specify the array's size. The usual cause is in an expression that computes the
array's size, especially with multidimensional arrays that contain variable-sized
components.

* NoSuchElementException

 An object of this class is thrown to indicate that there are no more elements in an
Enumeration. This type of error is common when using Java's collection classes
and is a rare example of a RuntimeException that might be reasonably nabbed by
a catch statement.

* NullPointerException

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

104

 Java throws an object of this class to indicate that a statement has attempted to use
an uninitialized object. Such an object, for example, might be declared but not
constructed using the new operator. The typical cause is a method that returns a
class object but that in some cases might return null if the method cannot
construct the requested object. Statements that call that method must check
whether the return result is null, or they may suffer this exception. Two
suggestions: one, rewrite the method to return an object that can be safely used by
the method's caller but that has no actual effect or data, or two (better), have the
method throw an exception to report the unusual condition.

* NumberFormatException

 Typically thrown to indicate an attempt to convert a badly formatted string to a
value — for example, trying to convert an alphabetic string to an integer. This is
another rare example of a RuntimeException that can be safely caught, perhaps to
deal with improper input.

* SecurityException

 The java.lang.SecurityManager class throws an exception of this type to indicate a
security violation or a potential security-related problem. An application's security
policy, for instance, might require verification before attempting a critical
operation. For example, the checkPackageAccess() method in the
SecurityManager class throws a SecurityAccess exception if the user does not
have access to the package. By implementing a security policy, it's possible to
safely restrict the use of a package or class — after a trial period has expired, for
example, in a shareware collection of programming tools.

* StringIndexOutOfBoundsException

 This exception is a more general case of the IndexOutOfBoundsException class.
It indicates an out of bounds index value, similar to that explained for
ArrayIndexOutOfBoundsException, but for a string object.

* UndeclaredThrowableException

 This exception is thrown to indicate that a proxy class's invoke() method has
thrown an exception of a class not listed in the real method's throws clause. Using
proxy classes is an advanced technique beyond the scope of this book, but in
general it is a way of creating classes for existing objects to add new runtime
features such as tracing method calls or performing other debugging chores.
Applications rarely need proxy classes, and you are unlikely to experience this
exception. If you do, however, the mistake is undoubtedly in your proxy class's
invoke() method.

* UnsupportedOperationException

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

105

 Java's collection classes might throw this exception if an attempt is used to access
an object in a collection in an illegal way.

Summary
* An exception is an exceptional condition that requires special handling. Checked

exceptions are those that the compiler can verify from a method's throws clause
and that are caught by a catch statement. Unchecked exceptions are not similarly
verifiable and generally indicate a system problem or a bug in the source code.

* To use exceptions, programs call methods and execute statements in a try block.
Any exceptions thrown by those methods or statements are handled in one or
more catch blocks.

* If an exception is not handled by a catch block, the try block ends abnormally,
causing the method in which it exists to immediately return to its caller. In the
case of unchecked exceptions, this might cause the current thread or program to
terminate.

* To ensure that critical code is executed, insert statements in a finally block. A
finally block's statements are always executed, regardless of whether an exception
is thrown in a try block.

* All exception classes are subclasses of Throwable. There are two basic kinds.
Error exceptions indicate serious system problems and are rarely caught explicitly
by applications. Exception classes are those that a program can catch and
typically deal with at runtime — such as a file not found error.

* The RuntimeException class extends Exception to provide another set of
unchecked exceptions. These are generally less serious than Errors but indicate a
problem in the source code — a loop, for example, that attempts to access an
array element beyond its last index.

Chapter 8 String Things
Strings are probably the most common and widely used type of data in computer
programming. In this chapter, you learn about Java's two string classes, and also how to
use individual characters.

In This Chapter

* Declaring and using strings

* Declaring and using characters

* String and Stringbuffer classes

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

106

* The Character class

* Getting user input

Declaring and Using Strings
Java supports Unicode characters, each 16 bits long, and capable of representing most if
not all written human languages in the world. Because the first 127 of these characters are
equivalent to the ASCII character set, Java programs can be written using just about any
text editor. However, if you have a Unicode editor, you can use it to prepare Java source
code. This means you can use Unicode for your program's identifiers, class names,
variables, as well as for characters and strings.

As you have already seen in many of this book's samp le listings, a literal string is written
as zero or more characters delimited with double quotes. Probably the most common use
for a literal string is as a label or greeting. For example, this statement displays a literal
string:

System.out.println("A string is a wonderful thing!");

Similarly, you can declare a string variable, and assign it a literal value:

String s = "I am a string!";

In this chapter, you learn several other ways to create strings, and you learn about many
of the methods you can call for the String and StringBuffer classes. This chapter also
covers individual characters of type char, as well as the Character wrapper class.

Concatenating Strings
You may use the + and += operators to concatenate, or join, strings. You may also create
strings from other types of data by attaching them to another string. The following
statements display a string composed of three parts — two literal strings and the value of
distance:

double distance = 45.5;
System.out.println("Distance = " + distance + " miles");

Programmers who know other languages may think that the value of distance is somehow
passed to println(). It isn't. Because of the plus signs and the presence of a literal string
label, Java converts distance to a string, appends it to the two literal strings, and then
passes that result to println(). Java attempts to convert most data types this way to strings,
which makes it easy to display values of most types. If you run those two statements, you
see on screen

Distance = 45.5 miles

Strings as Objects
Internally, all strings are represented as objects of the String or StringBuffer classes. It's
important to understand, however, that when you use a string in a program, it is

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

107

represented as an object, not as an array of characters as in other languages such as C.
(However, you can create arrays of characters if you want — see "Character Arrays" in
this chapter.)

You can create String objects for creating and storing string data, which is often more
convenient than passing literal strings to methods such as println(). For example, these
three statements display the same results as in the preceding section:

double distance = 45.5;
String s = "Distance = " + distance + " miles";
System.out.println(s);

This time, however, the program constructs a String object, s, and then displays it using a
println() statement. Again, Java converts distance to a string, concatenates it to the two
literal strings, and assigns the result to the string object. Having strings as objects opens
all sorts of possibilities for programs. You can, for example, find the length of a string by
calling the String class's length() method as in this statement:

System.out.println("Length = " + s.length() + " character(s)");

Attached to the preceding fragment, the statement displays

Length = 21 character(s)

One significant characteristic of a String object is that it may have a length of zero. If you
create and assign a string as follows, the program displays empty's length as zero:

String empty = "";
System.out.println("Length = " + empty.length());

Strings created as objects of the String class are immutable — once constructed, their
values cannot be changed. To create string objects that can be changed at runtime, you
may instead use the StringBuffer class. But first, let's look at another related type, the
char.

Declaring and Using Characters
Java programs may declare and use individual char variables. The char data type is native
to Java. It is 2 bytes long, and it holds an unsigned integer value. Literal characters are
represented as any character you can type, delimited by single quotes. For example, this
statement creates a char variable, dollarSign, and assigns it the dollar sign character:

char dollarSign = '$';

The literal character value is typed using single quotes (apostrophes on most PC
keyboards). You may create literal characters this way using any symbol that you can
type. To enter Unicode symbols that you can't type on the keyboard, you can use the
escape sequence \uxxxx to specify a character in hexadecimal:

char c = '\u0a76';
System.out.println("Char = " + c);

The Unicode escape sequence may appear anywhere in a literal string or character. The
actual character displayed, however, depends on whether your output terminal supports

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

108

Unicode characters. If not, you see a default value for the character — a question mark,
for example, in a Windows DOS prompt window. Type two backslashes to represent one:

System.out.println("C:\\Windows\\Command");

That displays the Windows path C:\Windows\Command.

Tip

One significant difference between strings and characters is that a char
variable can never have a length of zero.

Mixing Characters and Strings
You may mix characters and strings in several ways. For example, use the + operator to
concatenate a character and a string:

char ch = 'Q';
System.out.println("Char = " + ch);

You can also use the += operator to construct String objects out of characters. The
following fragment creates a String object, s, containing the lowercase alphabet
characters @@spa@@sp through @@spz@@sp.

String s = "";
for (char ch = 'a'; ch <= 'z'; ch++)
 s += ch;
System.out.println(s);

In addition to its native char data type, Java also provides a Character wrapper class.
Later in this chapter, I'll explain more about how to use this class.

Tip

Wrapper classes provide an object-oriented interface to a native data type
such as char or double. Chapter 9, "Numeric Classes," covers more about
wrapper classes.

Character Arrays
Although in Java strings are represented as String or StringBuffer objects, you may
construct arrays of char values for a variety of purposes. For example, you might store
arrays of characters for simplicity when you don't need a full string object.

You haven't learned about arrays yet (more about them in Chapter 10, "Arrays"), but they
differ from arrays in other languages. In Java, arrays are constructed at runtime using the
new operator. For example, this statement defines an array of 26 char values:

char letters[] = new char[26];

The empty square brackets state that letters is an array. The new operator constructs an
array of 26 char values, assigned to the letters identifier. Each character in the array is

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

109

initialized to the value zero. By the way, you may place the empty square brackets after
the data type or the identifier. You can write the preceding statement as follows:

char[] letters = new char[26];

I mention this only in case you come across code that uses this alternate style. The former
style is recommended. You may also declare and define a char array using separate
statements such as

char letters[];
...
letters = new char[26];

The first line declares that letters is an array of char values. Elsewhere in the program, the
last line constructs the actual array and assigns its reference to letters. Because the array
is constructed at runtime, you may use a variable to specify its size — one great
advantage in Java over C and C++. Here's yet another way to create the letters array:

char letters[];
int k = 26;
letters = new char[k];

At runtime, the final statement creates the letters array capable of storing a number of
char values equal to k.

String Classes
Now, let's get back to Java's string classes. There are two kinds:

* String: Use this one for fixed length strings that will not change at runtime. A
String object is immutable.

* StringBuffer: Us e this class for variable-length strings that might change at
runtime. A StringBuffer object is mutable.

You may be surprised to learn that these two classes are each extended from the Object
superclass but are not otherwise related to each other. The next sections explain how to
use each of Java's two string classes.

The String Class
Java's String class provides numerous public constructors and methods, so to make them
easier to learn, I divided their declarations into reference listings ending with the file
extension .txt. These and similar listings in this chapter are stored in .txt files on the CD-
ROM. They contain no code and cannot be compiled.

String Constructors

Listing 8-1 shows the String class constructors, which give you nine different ways to
construct String objects. In addition to these, Java 2 still provides but deprecates the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

110

following two constructors, which were intended to convert byte arrays to strings but are
unreliable. Use the constructors in Listing 8-1 instead of these two:

//deprecated String constructors
public String(byte ascii[], int hibyte, int offset, int count);
public String(byte ascii[], int hibyte);

Listing 8-1
StringConstructors.txt
001: public String();
002: public String(String value);
003: public String(char value[]);
004: public String(char value[], int offset, int count);
005: public String(byte bytes[], int offset,
 int length, String enc);
006: public String(byte bytes[], String enc);
007: public String(byte bytes[], int offset, int length);
008: public String(byte bytes[]);
009: public String(StringBuffer buffer);

The String class overloads nine constructors that give you a variety of ways to create
String objects. The default, no-parameter, constructor is used when you construct a string
like this:

String s = new String();

The resulting object, s, has zero length, and because a String object is immutable, you
won't usually create strings this way. However, the technique is often valuable to avoid a
NullPointerException, as Listing 8-2, NullString.java, demonstrates.

Listing 8-2
NullString.java
001: class NullString {
002: // Return a null string reference
003: public static String badString() {
004: String s = null;
005: return s;
006: }
007: // Return a zero-length string
008: public static String goodString() {
009: String s = new String();
010: return s;
011: }
012: // Try the preceding two methods
013: // The NullPointerException is intentional
014: public static void main(String args[]) {
015: String s;
016: s = badString(); // Change to goodString() and rerun
017: System.out.println("Length(s) = " + s.length());
018: }
019: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

111

Running the program causes it to fail with a NullPointerException. On screen, you see
this message from the Java runtime interpreter:

Exception in thread "main" java.lang.NullPointerException
 at NullString.main(NullString.java:23)

This happens because method badString() (see line 003) returns a null reference instead
of a constructed String object. The attempt to use that reference as an object at line 017
causes the exception to be thrown. Because String s is null, the expression s.length() is
not allowed. The situation is common with many methods that return class objects. One
possible fix is to test the method's return value for null:

s = BadString();
if (s != null)
 // use s safely

But this is tedious in programs that call the method in many different places. A better
solution is to return an empty string, as demonstrated by method goodString() (see lines
008 and 009). To fix the program, change badString() at line 016 to goodString().

Getting back to String's constructors, there are two common ways to initialize a String
object using a literal string:

String s1 = "Literal construction";
String s2 = new String("Alternate method");

Either technique is correct and produces similar results (but see "The Internal String
Pool" in this chapter). Assigning a literal string to a String object actually calls the String
constructor that declares a String parameter (see Listing 8-1, line 002).

It is also occasionally useful to create String objects using char arrays, perhaps read from
a file or constructed in code. Listing 8-3, CharArray.java, shows how.

Listing 8-3
CharArray.java
001: class CharArray {
002: public static void main(String args[]) {
003: String s;
004: char array[] = new char[26];
005: for (char c = 'a'; c <= 'z'; c++)
006: array[c – 'a'] = c;
007: s = new String(array);
008: System.out.println(s);
009: }
010: }

The program declares a String variable, and also an array of 26 char values. A for loop
fills array with the lowercase letters @@spa@@sp through @@spz@@sp. Line 007
shows how to construct the String object by passing the array to the class constructor.
Alternatively, you can pass a starting index and count to construct the string using only a
portion of the char array. For example, given the array in the listing, the following
constructs a String object equal to @@dpefghijklmn@@dp:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

112

s = new String(array, 4, 10);

When constructing strings from arrays, a NullPointerException is thrown if the array is
null, so you may want to place the statement in a try-catch block. However, this isn't
necessary here since we know that array is not null.

Be aware that, when converting an array of char to a string, the array contains characters
in 16-bit Unicode format. C and C++ programmers are especially likely to assume
incorrectly that Java's char data type is 8-bit ASCII. It isn't. When you need to convert an
8-bit array of ASCII characters, you must instead use a byte array and pass it to one of
the four String constructors that begin with the parameter byte bytes[] (see Listing 8-1
lines 005-008).

Tip

As mentioned, the String class provides two deprecated constructors for
converting byte arrays to strings. To do this, use only one of the four
constructors shown in Listing 8-1.

You might need to convert ASCII character arrays in cases where your Java programs
calls a C or C++ library function, or receives the data from some other source. Starting
with a byte array declared and initialized as follows:

byte byteArray[] = new byte[26];
for (int i = 0; i < 26; i++)
 byteArray[i] = (byte)(i + 'a');

The type-cast expression in the last line is necessary because Java evaluates the
expression i + @@spa@@sp as type int. To convert the resulting byte array to a String
object, use a statement such as

s = new String(byteArray);

As with char arrays, you can additionally specify offset and length values to create a
string using only a portion of the array:

s = new String(byteArray, 2, 5);

If byteArray holds the lowercase alphabet, that statement creates a String object equal to
@@dpcdefg@@dp.

Two other constructors (see Listing 8-1, lines 005-006) perform similar conversions of
byte arrays to strings, but also take an additional parameter String parameter named enc
for encoding. This string specifies the platform character encoding used on the target
system to convert ASCII characters to Unicode. The exact encoding to use depends on
the system, but all systems support the encodings in Table 8-1.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

113

Table 8-1
Character Encodings

Encoding Description

ISO–8859–1 Same as ISO-Latin-1 on many systems

US–ASCII Standard 7-bit ASCII

UTF–16 16-bit Unicode, byte-order marked

UTF–16BE 16-bit Unicode, big endian byte order

UTF–16LE 16-bit Unicode, little endian byte order

UTF–8 8-bit Unicode

Listing 8-4, CharEncoding.java, demonstrates how to construct a String object from an
array of 8-bit bytes (that is, standard ASCII values), to an encoded Unicode string. You
may replace the encoding literal string in line 011 with any of the values in Table 8-1.
You may also try other encodings, but be prepared to receive an
UnsupportedEncodingException if the encoding is not supported on your system. Also,
some of the encodings may not produce visible results — for example, an MS-DOS
Prompt window supports only the US–ASCII and UTF–8 encodings.

Listing 8-4
CharEncoding.java
001: import java.io.UnsupportedEncodingException;
002:
003: class CharEncoding {
004: public static void main(String args[]) {
005: String s;
006: byte byteArray[] = new byte[26];
007: for (int i = 0; i < 26; i++)
008: byteArray[i] = (byte)(i + 'a');
009: // Convert byte array to a String using an encoding
010: try {
011: s = new String(byteArray, "UTF–8");
012: System.out.println(s);
013: } catch (UnsupportedEncodingException e) {
014: System.out.println(e.getMessage());
015: }
016: }
017: }

As you can with arrays of char, you can also specify index and length values. For
example, if you replace line 011 with the following statement, the resulting string equals
@@dpklmnopqr@@dp:

s = new String(byteArray, 10, 8, "UTF–8");

Finally, you may construct a String using a StringBuffer object — but more on that in
this chapter's discussion of the StringBuffer class.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

114

String Methods

Listing 8-5, StringMethods.txt, shows most of the methods available in the String class.
Refer to this listing while reading the sample code and discussions in the following
sections.

Listing 8-5
StringMethods.txt
001: // String class inspection methods
002: public int length();
003: public char charAt(int index);
004: public void getChars(int srcBegin, int srcEnd,
 char dst[], int dstBegin);
005: public byte[] getBytes(String enc);
006: public byte[] getBytes();
007: public int hashCode();
008:
009: // String class comparison methods
010: public boolean equals(Object anObject);
011: public boolean equalsIgnoreCase(String anotherString);
012: public int compareTo(String anotherString);
013: public int compareTo(Object o);
014: public int compareToIgnoreCase(String str);
015: public boolean regionMatches(int toffset, String other,
 int ooffset, int len);
016: public boolean regionMatches(boolean ignoreCase,
 int toffset, String other, int ooffset, int len);
017: public boolean startsWith(String prefix, int toffset);
018: public boolean startsWith(String prefix);
019: public boolean endsWith(String suffix);
020:
021: // String class index methods
022: public int indexOf(int ch);
023: public int indexOf(int ch, int fromIndex);
024: public int lastIndexOf(int ch);
025: public int lastIndexOf(int ch, int fromIndex);
026: public int indexOf(String str);
027: public int indexOf(String str, int fromIndex);
028: public int lastIndexOf(String str);
029: public int lastIndexOf(String str, int fromIndex);
030:
031: // String class conversion methods
032: public String substring(int beginIndex);
033: public String substring(int beginIndex, int endIndex);
034: public String concat(String str);
035: public String replace(char oldChar, char newChar);
036: public String toLowerCase(Locale locale);
037: public String toLowerCase();
038: public String toUpperCase(Locale locale);
039: public String toUpperCase();
040: public String trim();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

115

041: public char[] toCharArray();
042: public native String intern();

Note

Unnumbered lines in Listing 8-5 are continuations of the preceding lines,
broken here to fit on the page. If you are using a Web browser to view the
listing, the text appears on one line.

Searching Strings for Characters

To determine which character is at a certain index position in a string, call the charAt()
method, which returns char. It's a good idea to verify that the target string length is
greater than the specified index, as this fragment demonstrates:
String s = "abcdefg";
if (s.length() >= 5) {
 char ch = s.charAt(4);
 System.out.println("Char at 4 = " + ch);
}

That sets ch equal to @@spe@@sp, the character at the fourth index position in the test
string. The first index position is zero, so the fourth is the fifth character.

Note

If you call charAt() with an argument that is greater than or equal to the
string length, Java throws StringIndexOutOfBoundsException.

To perform the reverse operation — finding the integer index of a specific character —
call one of several indexOf() methods, possibly followed by a call to substring() to
extract a portion of a string. The following fragment searches a string for the letter k:

String s = "abcdefghijklmnop";
int index = s.indexOf('k');
if (index >= 0) {
 String sub = s.substring(index);
 System.out.println(sub);
}

If index is zero or greater, the program creates another string, sub, to which it assigns the
string @@dpklmnop@@dp — the value from the reported index to the end of the
original string. If indexOf() returns –1, the requested character was not found. Another
form of substring() takes a second integer argument, representing the final index of the
string to extract. Given the preceding code, this statement sets sub to @@dpklm@@dp:

String sub = s.substring(index, index + 3);
 System.out.println(sub);

Strings and Substrings

Other forms of indexOf accept additional parameters. For example, you can specify an
index to begin searching a string from a position other than the beginning. Listing 8-6,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

116

MonthNames.java, shows how to use indexOf() to parse a string composed of variab le-
length substrings and separator characters (@@sp#@@sp).

Listing 8-6
MonthNames.java
001: class MonthNames {
002: public static void main(String args[]) {
003: String s = "#January#February#March#April" +
004: "#May#June#July#August#September#October" +
005: "#November#December#";
006: int i = 0, j;
007: while (i++ >= 0) {
008: j = s.indexOf('#', i); // i = starting index
009: if (j >= 0) {
010: String month = s.substring(i, j);
011: System.out.println(month);
012: }
013: i = j;
014: }
015: }
016: }

Tip

To write a long literal string on multiple lines, use the concatenation
operator + as shown in Listing 8-6, lines 003-005. Early versions of Java
allowed ending strings with a backslash and then continuing the string on
the next line, but Java 2 no longer supports nor needs this line
continuation character.

The sample program extracts the month names from the original string, using two integer
index values and the indexOf() method to hop from separator to separator. Other forms of
indexOf() accept a string argument, which is useful for finding substrings, as in the
fragment:

String s = "Passwords.txt";
int index = s.indexOf(".txt");
if (index >= 0)
 System.out.println(s + " is a text file");

The statements search a filename string for the extension, .txt. A potentially easier
technique uses the endsWith() method, which returns a boolean true or false value:

String s = "LoveLetters.txt";
if (s.endsWith(".txt"))
 System.out.println(s + " is a text file");

Conversely, use startsWith() to find out if a string begins with a certain substring:

String s = "Accounts1.txt";
if (s.startsWith("Accounts"))
 System.out.println(s + " is an Accounts file");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

117

Comparing Strings

To compare two strings, call compareTo(), which returns an integer value. Listing 8-7,
Compare.java, demonstrates this method.

Listing 8-7
Compare.java
001: class Compare {
002: public static void main(String args[]) {
003: String s1 = "abcdefg";
004: String s2 = "ABCDEFG";
005: int result = s1.compareTo(s2);
006: if (result == 0)
007: System.out.println("s1 = s2");
008: else if (result < 0)
009: System.out.println("s1 < s2");
010: else // if (result > 0)
011: System.out.println("s1 > s2");
012: }
013: }

The compareTo() method returns –1 if its string object is alphabetically less than the
argument passed to the method. It returns 0 if the two strings are exactly equal. It returns
+1 if the object is alphabetically greater than its argument.

You can also compare one string with another using the equals() method, as in

if (s1.equals(s2))
 System.out.println("s1 = s2");

Don't, however, attempt to compare strings using the == or != operators. Remember that
string variables are actually references to real string objects that exist somewhere in
memory. Java permits you to write a statement such as

if (s1 == s2) // ???
 DoSomething();

That compares whether the references s1 and s2 are to the same object, not whether the
two strings have the same content. This is not necessarily incorrect — but be sure it's
what you want to do; otherwise, use a method such as equals() to compare strings.

Tip

Because equals() is inherited from Object, the method can compare any
two objects, not only strings.

To compare strings ignoring case, call equalsIgnoreCase() like this:

if (s1.equalsIgnoreCase(s2))
 System.out.println("s1 = s2");

Compare substrings by calling one of two regionMatches() methods. The two methods
differ only in having an initial boolean parameter, which you can set to true to ignore

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

118

case; otherwise, or if this parameter is false, the comparison is case sensitive. The full
method is defined as

public boolean regionMatches(boolean ignoreCase, int toffset,
 String other, int ooffset, int len);

The overloaded method is the same, but it lacks the ignoreCase parameter. Following are
descriptions of this method's somewhat cryptic parameters:

* boolean ignoreCase — Set to true to ignore case for the comparison. Omit this
argument, or set it to false, for a case-sensitive comparison.

* int toffset — The offset index to begin the comparison of the string object for
which you call regionMatches().

* String other — The second string to compare with the string object for which the
method was called.

* int ooffset — The offset index to begin the comparison of the other string object
parameter, other. The spelling with two initial o's is intentional.

* int len — The number of characters to compare in both strings.

The following code shows how to use regionMatches() to determine whether a substring
is part of another string.

String s = "Haste makes waste";
String sub = "waste";
if (s.regionMatches(true, 12, sub, 0, sub.length()))
 System.out.println("sub string found in s");

Other Useful String Methods

The String class has several other useful methods. Call toLowerCase() and toUpperCase()
to return a string with all lower- or uppercase characters. The methods do not alter the
original string; to do that, reassign the results back to the object. Examine this fragment:

String s = "Haste makes waste";
System.out.println(s.toUpperCase());
System.out.println("s = " + s);
s = s.toUpperCase();
System.out.println("s = " + s);

The statements display a string in uppercase, then convert it to uppercase and display the
result. Conversions such as this might require different actions depending on where the
program is run. To conform to the current locale, import the Locale class and use it in the
string conversion. Listing 8-8, StringLocale.java, shows how.

Listing 8-8
StringLocale.java
001: import java.util.Locale;
002:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

119

003: class StringLocale {
004: public static void main(String args[]) {
005: String s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
006: System.out.println("Before : " + s);
007: s = s.toLowerCase(Locale.CANADA);
008: System.out.println("After : " + s);
009: }
010: }

The first line imports Locale, which supports several default localization objects. Line
007 specifies the CANADA Locale. The French-Canadian object is named
CANADA_FRENCH. Locales might specify country names with and without languages.
Or, they might specify a language. For example, other commonly used locales include
ENGLISH, FRENCH, GERMAN, ITALIAN, JAPANESE, CHINESE, and
TRADITIONAL_CHINESE. There are many others — see the source code for the
Locale class for a complete list.

To concatenate and save string objects, use the concat() method. Because this method
does not alter the original string, to actually append strings you must reassign the results
of the method back to the original object. For example, Listing 8-9, Concat.java, builds
the string, @@dpTesting One Two Three@@dp, in the test String object.

Listing 8-9
Concat.java
001: class Concat {
002: public static void main(String args[]) {
003: String s1 = " One";
004: String s2 = " Two";
005: String s3 = " Three";
006: String test = "Testing";
007: test = test.concat(s1);
008: test = test.concat(s2);
009: test = test.concat(s3);
010: System.out.println(test);
011: }
012: }

Rather than call concat(), however, you can use the string concatenation operator (+) to
do the same job. This is a little neater and can replace lines 007-009:

test = test + s1 + s2 + s3;

Call replace() to replace all occurrences of a specific character with another character.
The fragment

String s = "#January#February#March#April#May#";
System.out.println(s.replace('#', '@'));

changes the @@sp#@@sp separators to @@sp@@@sp characters in String s. The
method does not alter the original string. Again, to do that, you must assign the results
back to the object:

s = s.replace('#', '@');

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

120

Several String methods are available for converting between char and byte arrays and
String objects. You might do this to create 8-bit ASCII data for use with other languages
such as C and C++.

Call toCharArray() to assign any String object to an array of characters. You do not have
to initialize the array — the method creates it at runtime, as this fragment demonstrates:

char alpha[];
String s = "abcdefghijklmnopqrstuvwxyz";
alpha = s.toCharArray();

The result is the alphabetic characters in a newly allocated array of char, which is
assigned to the array variable, alpha. The statement effectively converts the Unicode
characters in a string to 8-bit ASCII.

Another way to get character data out of a String object is to call one of two methods —
getChars() or getBytes(). Use getChars() as follows to extract the Unicode characters
from a String object into a char array:

String s = "abcdefghijklmnopqrstuvwxyz";
char alpha16[] = new char[6]; // char array
s.getChars(12, 18, alpha16, 0);

The results are stored in the alpha16 array passed here as the third argument to the
getChars() method. A similar method, getBytes(), with similar parameters except for an
array of bytes in the third position, has been deprecated in Java 2. Do not use this method:

//deprecated
public void getBytes(int srcBegin, int srcEnd,
 byte dst[], int dstBegin);

Instead, use one of two methods declared as

public byte[] getBytes();
public byte[] getBytes(String enc);

Either call getBytes() with no parameters, and assign the result to a byte array, or pass an
encoding string. See "String Constructors" in this chapter for an explanation of encoding
strings.

Call trim() to remove any leading and trailing blanks from a string. As with several other
String methods, calling trim() does not alter the original string. If you want to do that,
assign the result back to the object as Listing 8-10, StringTrimmer.java, demonstrates at
line 005.

Listing 8-10
StringTrimmer.java
001: class StringTrimmer {
002: public static void main(String args[]) {
003: String s = " blankety blank ";
004: System.out.println("Length before = " + s.length());
005: s = s.trim(); // trim blanks from string
006: System.out.println("Length after = " + s.length());

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

121

007: }
008: }

The Internal String Pool

Referring back to Listing 8-5 you find one more String method, intern(), at the bottom of
the list. This obscure method returns a string from a pool of strings that are guaranteed to
be unique. The String class automatically maintains and uses this pool, but you may
access it through the intern() method. If you call that method, you get back a String object
equal to the one you specify, but if that string value is in the pool, you receive that object,
not a brand new one. In addition, if the string is not already in the pool, it is added.
Listing 8-11, StringIntern.java, demonstrates the effect of calling intern().

Listing 8-11
StringIntern.java
001: class StringIntern {
002: public static void main(String args[]) {
003: String s1 = "Unique string";
004: String s2 = s1.intern();
005: if (s1 == s2)
006: System.out.println("s1 equals s2");
007: }
008: }

This is one case where it is correct to use the == operator to compare two strings (see line
005) because, after calling intern(), we want to verify whether s1 and s2 refer to the same
object, not merely whether their character values are the same. Running the program
displays s1 equals s2, proving that intern() found the literal string "Unique string" in the
pool, and returned that object to be assigned to s2 at line 004.

You don't have to call intern() this way to avoid duplicating strings needlessly. Java does
so automatically. For example, if you create two strings and assign them identical literal
values, Java assigns the same String object to both variables:

String s1 = "Unique string";
String s2 = "Unique string"; // s1 == s2

However, the string pool is not used when you construct a String object using a statement
such as:

String s3 = new String("Unique string");

In that case, the string to which s3 refers is not taken from the pool.

String Value-of Methods

A series of highly useful overloaded methods are all named valueOf(). They convert
values of built-in Java types to strings. Listing 8-12, StringValue.txt, shows the method
declarations in the String class:

Listing 8-12

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

122

StringValue.txt
001: public static String valueOf(Object obj);
002: public static String valueOf(char data[]);
003: public static String valueOf(char data[],
 int offset, int count);
004: public static String copyValueOf(char data[],
 int offset, int count);
005: public static String copyValueOf(char data[]);
006: public static String valueOf(boolean b);
007: public static String valueOf(char c);
008: public static String valueOf(int i);
009: public static String valueOf(long l);
010: public static String valueOf(float f);
011: public static String valueOf(double d);

Use the valueOf() methods to convert values to strings. For example, these statements set
String s to the string @@dp3.14159@@dp:

double d = 3.14159;
String s = String.valueOf(d);

You've seen in other sample statements another way to do a similar job. Java converts
values automatically to strings in statements such as

String s = "Value = " + d;

Because of the literal string label, Java assumes you want to create a string result. The
compiler calls the appropriate String class valueOf() method to perform the conversion.
However, the following statement does not compile:

String s = d; // ???

Java rejects that because the String and double data types are incompatible for
assignment — the compiler does not make the logical conclusion that you want to
convert d to a string. To do that, call valueOf() as just shown.

All valueOf() methods are declared static, which means they are normally called in
reference to the String class. You may call them in reference to a String object, but I can
think of no good reason to do so. The methods accept the following types of parameters
(refer back to Listing 8-10):

* boolean b — Converts boolean value to string @@dptrue@@dp or
@@dpfalse@@dp.

* char c — Converts a character to a string.

* char data[] — Converts an array of characters to a string.

* char data[], int offset, int count — Converts an array of characters to a string
using count characters starting with the offset index in the data array.

* double d — Converts a double value to a string.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

123

* float f — Converts a float value to a string.

* int i — Converts an int value to a string.

* long l — Converts a long value to a string.

* Object obj — Converts any other object to a string.

Tip

To convert your own class objects to strings, override and implement the
toString() method inherited from Object. You can then use your class
objects in concatenation statements, or you can call toString() and assign
the result to a String object.

Two related overloaded methods named copyValueOf() convert a char array to a String
object. Call the method like this:

char alpha[] = new char[26];
for (char c = 'a'; c <= 'z'; c++)
 alpha[c – 'a'] = c;
String s = String.copyValueOf(alpha);

First, the program creates an array of char values equal to the alphabet. The final line
calls copyValueOf() to convert the array to a String object. Because this method is static,
you normally call it in reference to the String class as shown here. Alternatively, you may
specify integer offset and count values to create a String object from a portion of a char
array. Given the preceding code, the following statement creates String s equal to
@@dpjklmno@@dp:

String s = String.copyValueOf(alpha, 9, 6);

The StringBuffer Class
As mentioned, String objects are immutable. To create string objects that you can modify
at runtime, use the StringBuffer class. Listing 8-13 shows the constructors and methods
for Java's StringBuffer class. Refer to this listing while reading the following sections
about how to use this class.

Listing 8-13
Java's StringBuffer class
001: // StringBuffer class constructors
002: public StringBuffer();
003: public StringBuffer(int length);
004: public StringBuffer(String str);
005:
006: // StringBuffer class length and capacity methods
007: public int length();
008: public int capacity();
009: public synchronized void ensureCapacity(int minimumCapacity);
010: public synchronized void setLength(int newLength);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

124

011:
012: // StringBuffer class char methods
013: public synchronized char charAt(int index);
014: public synchronized void getChars(int srcBegin, int srcEnd,
 char dst[], int dstBegin);
015: public synchronized void setCharAt(int index, char ch);
016:
017: // StringBuffer class append methods
018: public synchronized StringBuffer append(Object obj);
019: public synchronized StringBuffer append(String str);
020: public synchronized StringBuffer append(char str[]);
021: public synchronized StringBuffer append(char str[],
 int offset, int len);
022: public StringBuffer append(boolean b);
023: public synchronized StringBuffer append(char c);
024: public StringBuffer append(int i);
025: public StringBuffer append(long l);
026: public StringBuffer append(float f);
027: public StringBuffer append(double d);
028:
029: // StringBuffer class delete and replace methods
030: public synchronized StringBuffer delete(int start, int end);
031: public synchronized StringBuffer deleteCharAt(int index);
032: public synchronized StringBuffer replace(int start, int end,
 String str);
033:
034: // StringBuffer class substring methods
035: public String substring(int start);
036: public synchronized String substring(int start, int end);
037:
038: // StringBuffer class insert methods
039: public synchronized StringBuffer insert(int index,
 char str[], int offset, int len);
040: public synchronized StringBuffer insert(int offset, Object obj);
041: public synchronized StringBuffer insert(int offset, String str);
042: public synchronized StringBuffer insert(int offset,
 char str[]);
043: public StringBuffer insert(int offset, boolean b);
044: public synchronized StringBuffer insert(int offset, char c);
045: public StringBuffer insert(int offset, int i);
046: public StringBuffer insert(int offset, long l);
047: public StringBuffer insert(int offset, float f);
048: public StringBuffer insert(int offset, double d);
049:
050: // StringBuffer class other methods
051: public synchronized StringBuffer reverse();
052: public String toString();
053: private synchronized void readObject(
 java.io.ObjectInputStream s);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

125

Note

Many StringBuffer methods are synchronized, which means they are
suitable for use in threaded code. See Chapter 19, "Threaded Code," for
more information.

StringBuffer Constructors

You can construct a StringBuffer object three ways. To create one for later use, but not
initialize it to any specific value or maximum size, declare the object like this:

StringBuffer buffer = new StringBuffer();

You must use the new operator to initialize all StringBuffer objects. Alternatively,
however, you may delay construction of the object using two separate steps:

StringBuffer filler;
...
filler = new StringBuffer();

Specify an initial length by passing an integer value to the StringBuffer constructor. For
example, the following statement constructs a StringBuffer object that can initially hold
up to 80 characters:

StringBuffer buffer = new StringBuffer(80);

When you know how many characters you will assign to the object, specifying an initial
length that way is more efficient than allowing the string to expand automatically. The
string can still grow larger than the specified length. Because construction takes place at
runtime, you may also use a variable as the StringBuffer object's size:

int len = 45;
StringBuffer buffer = new StringBuffer(len);

The third and final way to create a StringBuffer object is to initialize it using a String
object. For that, Java calls the following constructor:

StringBuffer(String str);

You might use this method to convert an immutable string into a StringBuffer for
modification:

String s = "Make me variable!";
StringBuffer canChange = new StringBuffer(s);

In that code fragment, String object s is immutable. The second statement converts the
String object to a StringBuffer object, which can be changed by other statements. For
example, you can append a new string to canChange.

StringBuffer Append Methods

Strings that will not change are best declared using the String class. Strings that might
change during a program should be StringBuffer objects. Although it's true that the String
class provides methods such as concat(), a close inspection of the method's declaration

public String concat(String str);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

126

reveals that it returns a String object, indicating that calling concat() creates an entirely
new instance of the String class. This is highly inefficient, especially when creating string
variables out of multiple parts such as filenames. For example, the code

String name = "Account";
String extension = ".dat";
String fileName = name;
fileName = fileName.concat(extension);

creates the String object fileName equal to the string @@dpAccount.dat@@dp.
Compare this to the equivalent StringBuffer technique, which calls the Append() method
using the same name and extension objects:

String name = "Account";
String extension = ".dat";
StringBuffer fileName = new StringBuffer(80);
fileName.append(name);
fileName.append(extension);

This might appear to be more work because (ignoring the first two declarations) it uses
three statements instead of two. Actually, however, this is more efficient because Java
needs to construct only one fileName StringBuffer object to which the name and
extension are appended.

You may use numerous variations of append() to attach data in string form to
StringBuffer objects. You may append boolean, char, char[] array, double, float, int, long,
and String class values. You may also append any other object that provides a toString()
method.

Listing 8-14, StringAppend.java, demonstrates somewhat frivolously how to use the
StringBuffer.append() method.

Listing 8-14
StringAppend.java
001: class StringAppend {
002: public static void main(String args[]) {
003: // Declare and initialize a StringBuffer object
004: StringBuffer buffer = new StringBuffer(80);
005: // Declare some variables of different types
006: boolean truth = false;
007: long value = 1000000;
008: char ch = '$';
009: // Append literal strings and variables to buffer
010: buffer.append("You won ");
011: buffer.append(ch);
012: buffer.append(value);
013: buffer.append(" is a ");
014: buffer.append(truth);
015: buffer.append(" statement!");
016: // Display the result
017: System.out.println(buffer);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

127

018: }
019: }

The program declares at line 004 the variable buffer as a StringBuffer object with an
initial capacity of 80 characters. Lines 006-008 create a few variables of various types,
which are appended along with literal strings to the buffer. Lines 010-015 show how to
call append(). Running the program displays

You won $1000000 is a false statement!

Note

Calling append() and other StringBuffer methods that modify the object's
content directly affect the object. With the String class, to save any
modifications such as extracting a substring, you have to save the result of
a method in a String object. With many StringBuffer methods, you simply
call them to modify the object.

For every append() method, there is a corresponding insert() method that you can use to
insert data into any position in a StringBuffer object. This is often convenient for poking
values into the middle of a string, as in this code:

double value = 65.7;
StringBuffer buffer =
 new StringBuffer("Value = light years");
buffer.insert(8, value); // Insert value at index 8

That fragment creates the following string in the StringBuffer object:

Value = 65.7 light years

Because the first index in a StringBuffer is zero, you can use a statement such as follows
to preface a string with a label:

buffer.insert(0, "Preface: ");

StringBuffer Length and Capacity Methods

All StringBuffer objects have length() and capacity() methods. A StringBuffer object's
length equals the number of characters it currently holds. The object's capacity is the
number of characters it can hold before the object is expanded. Unless specified, a
StringBuffer object's default initial capacity is 16 characters. The following statements
display each value for the buffer object:

System.out.println("Length = " + buffer.length());
System.out.println("Capacity = " + buffer.capacity());

If you append more data than a StringBuffer can hold, Java allocates additional space to
the object. Too many such reallocations are potentially inefficient, and you can prevent
them by allocating enough space to your StringBuffer objects. For example, this creates a
StringBuffer object that can initially hold up to 128 characters:

StringBuffer buffer = new StringBuffer(128);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

128

Note

All characters in a StringBuffer object are significant; there is no length
byte or termination null character as in C, C++, and other languages. A
StringBuffer declared with a length of 80 can hold up to exactly 80
characters. Appending or inserting more characters causes the
StringBuffer object to be expanded automatically.

Call setLength() to alter the length of a StringBuffer's string data. This in effect appends
blanks to the end of any existing string and might be useful for creating a series of strings
all of the same length for display purposes, as this code demonstrates:

StringBuffer buffer = new StringBuffer(40);
buffer.append("Short");
buffer.setLength(40);

The last statement pads buffer with blank characters to ensure its length is equal to its
capacity. The setLength() method is also useful for erasing a StringBuffer object's
contents. The statement

buffer.setLength(0);

clears all character data from buffer. The object's capacity, however, is not changed. To
do that — and ensure that a StringBuffer object can hold a string of a certain length, for
example — call ensureCapacity() like this:

buffer.ensureCapacity(128);

As long as enough memory is available, calling ensureCapacity() guarantees that buffer
can hold at least 128 characters.

Note

Regardless of its length, if a string's capacity is already greater or equal to
the argument passed to ensureCapacity(), Java makes no change to the
StringBuffer object's capacity.

Calling ensureCapacity() never reduces a StringBuffer object's size. To do that, you can
reallocate the object by calling one of its constructors. For example, when you are
finished using a StringBuffer object, you can reduce its memory size by reallocating the
object with a statement such as

buffer = new StringBuffer(); // Reallocate buffer

This creates a buffer object with a length of zero and a default initial capacity of 16
characters.

Extracting Characters from StringBuffer

It is often necessary to extract string data from a StringBuffer object. There are two basic
techniques. Call toString() to convert a StringBuffer object to a String object, as in the
following fragment, which converts buffer to a String object s:

StringBuffer buffer =

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

129

 new StringBuffer("A penny saved is a penny earned");
String s = buffer.toString();

To extract the individual characters from a StringBuffer object, call getChars() with four
arguments:

* int srcBegin — The index in the source StringBuffer of the first character to copy.

* int srcEnd — The index in the source StringBuffer where copying stops. The
character at index srcEnd – 1 is the last to be copied. The character at srcEnd is
not copied to the destination.

* char dst[] — The destination char array, with a length greater or equal to srcEnd –
srcBegin;.

* int dstBegin — The starting index in the dst array to which characters should be
copied.

These statements demonstrate how to use getChars() to extract a substring from a
StringBuffer object:

StringBuffer buffer =
 new StringBuffer("A stitch in time saves nine");
char chArray[] = new char[6];
buffer.getChars(2, 8, chArray, 0);

This fragment first constructs a buffer and a six-char array, chArray. The final statement
calls getChars() to extract the string @@dpStitch@@dp from buffer into chArray.

Another way to extract character data from a StringBuffer object is to call charAt() with
an integer index argument. For example, the code

char chArray[] = new char[buffer.length()];
for (int i = 0; i < buffer.length(); i++)
 chArray[i] = buffer.charAt(i);

uses a for loop to extract the characters from buffer, one at a time, and deposit each
character in chArray. Notice how the array is constructed to be the same size as the
buffer's length. (Of course, it would be easier to call getChars() — this code merely
demonstrates how to use the charAt() method.)

Other StringBuffer Methods

Conversely, you can change any character in a StringBuffer object by calling the
setCharAt() method. For example, the following code fragment creates a 40-character
StringBuffer object, sets its length to 40 (which pads it with blanks), and then calls
setCharAt() to change every character in the object to an asterisk:

StringBuffer buffer = new StringBuffer(40);
buffer.setLength(40);
for (int i = 0; i < buffer.length(); i++)
 buffer.setCharAt(i, '*');

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

130

Finally, in StringBuffer is a traditional string-processing method named reverse() that
reverses an object's string, end for end. The following code demonstrates the method by
reversing the alphabetic characters, a through z:

StringBuffer buffer = new StringBuffer(26);
buffer.append("abcdefghijklmnopqrstuvwxyz");
buffer.reverse(); // Reverse alphabet in buffer

Character Class
To provide object-oriented methods for working with char values, Java provides a
wrapper class, Character. You can use this class to compare characters, to determine
whether they are upper- or lowercase, and to perform other operations such as
determining whether a character is allowed for a Java identifier.

Listing 8-15 shows Java's Character wrapper class declaration. Remember that static
methods are typically called in reference to the class, not to an object of the class. Non-
static methods are always called in reference to an object.

Listing 8-15
Character.txt
001: // Character class constructor
002: public Character(char value);
003:
004: // Character class methods
005: public char charValue();
006: public int hashCode();
007: public boolean equals(Object obj);
008: public String toString();
009: public static char toLowerCase(char ch);
010: public static char toUpperCase(char ch);
011: public static char toTitleCase(char ch);
012: public static int digit(char ch, int radix);
013: public static int getNumericValue(char ch);
014:
015: // Character class "is" methods
016: public static boolean isLowerCase(char ch);
017: public static boolean isUpperCase(char ch);
018: public static boolean isTitleCase(char ch);
019: public static boolean isDigit(char ch);
020: public static boolean isDefined(char ch);
021: public static boolean isLetter(char ch);
022: public static boolean isLetterOrDigit(char ch);
023: public static boolean isJavaLetter(char ch);
024: public static boolean isJavaLetterOrDigit(char ch);
025: public static boolean isJavaIdentifierStart(char ch);
026: public static boolean isJavaIdentifierPart(char ch);
027: public static boolean isUnicodeIdentifierStart(char ch);
028: public static boolean isUnicodeIdentifierPart(char ch);
029: public static boolean isIdentifierIgnorable(char ch);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

131

030: public static boolean isSpace(char ch);
031: public static boolean isWhitespace(char ch);
032: public static boolean isISOControl(char ch);
033:
034: // Character class other methods
035: public static int getType(char ch);
036: public static char forDigit(int digit, int radix);
037: public int compareTo(Character anotherCharacter);
038: public int compareTo(Object o);

Character Class Methods
The Character wrapper class provides only one constructor. You can use it as follows to
create a class object, which can hold one character value:

Character chObj = new Character('Q');

However, this isn't a practical technique for storing character data. Instead, you'll
normally use the Character class to call one of several static methods, which do not
require constructing an object. For example, use one of the static "is" methods to
determine what kind of character the object holds. The following statement tests whether
a char variable, ch, is a lowercase alphabetic character:

if (Character.isLowerCase(ch))
 System.out.println("is lowercase");

Use other "is" methods to test for digits, spaces, uppercase characters, and so on. Call
isJavaLetter() to determine whether a character is a legal first character for a Java
identifier:

if (Character.isJavaLetter(ch))
 // okay to use for first letter of identifier

Call isJavaLetterOrDigit() to determine whether ch is legal for a non-initial identifier
character:

if (Character.isJavaLetterOrDigit(ch))
 // okay to use for identifier

Obtain the char value of a Character class object by calling charValue(). For example, use
the following technique to convert a Character object back to a char value:

char ch = chObj.charValue(); // Convert chObj back to char

Two methods determine whether a character is invisible — commonly called white space.
This includes characters such as tabs and new line codes that are embedded in text, but
are not visible, and more important for parsers, are not to be considered in processing.
Call isSpace() to determine generally if a character is white space. Call isWhiteSpace() to
determine whether a character is white space according to the same rules used for parsing
Java source code.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

132

Character Digits
One good use for the Character class is in code that parses strings representing values in a
specified radix, for example, hexadecimal. Use the digit() method to convert a character
to an integer value in a radix. For example, the following code fragment converts the
hexadecimal (radix 16) character @@spF@@sp to a corresponding digit:

char ch = 'F';
int digit = Character.digit(ch, 16);
System.out.println(ch + " = " + digit);

Running the fragment displays

F = 15

To go the other way — determining what character represents a certain value in a
specified radix — call forDigit(). For example, the code

int digit = 12;
char ch = Character.forDigit(digit, 16);
System.out.println(digit + " = " + ch);

sets ch to the character that represents the value 12 in radix 16 (hexadecimal). The output
statement displays

12 = c

If you instead want an uppercase letter, call toUpperCase() like this:

int digit = 12;
char ch = Character.forDigit(digit, 16);
ch = Character.toUpperCase(ch);
System.out.println(digit + " = " + ch);

To ensure that radix and character values are within allowable ranges, the Character class
provides the constants MIN_RADIX and MAX_RADIX. Listing 8-16, ChRadix.java,
uses these constants and the digit() method to print a list of characters in the ranges
@@sp0@@sp to @@sp9@@sp and @@spA@@sp to @@spZ@@sp, and show
whether they are used in a specific radix.

Listing 8-16
ChRadix.java
001: class ChRadix {
002: public static void main(String args[]) {
003: System.out.println("Min radix = " + Character.MIN_RADIX);
004: System.out.println("Max radix = " + Character.MAX_RADIX);
005:
006: int radix = 12, result;
007: char ch = '0';
008: if (Character.MIN_RADIX <= radix &&
009: radix <= Character.MAX_RADIX) {
010: while (ch <= 'Z') {
011: result = Character.digit(ch, radix);
012: if (result >= 0)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

133

013: System.out.println(
014: ch + " in base " + radix + " = " + result);
015: else
016: System.out.println("Char " + ch + " undefined for radix");
017: if (ch == '9')
018: ch = 'A';
019: else
020: ch++;
021: } // while
022: } else
023: System.out.println("Radix " + radix + " out of range");
024: }
025: }

Change the radix value at line 006 to any value. If out of range, the program reports that
fact. Otherwise, it shows the characters used for representing values in this radix. For
example, for radix 12, the program displays the following table (shortened here for space):

Min radix = 2
Max radix = 36
0 in base 12 = 0
1 in base 12 = 1
...
A in base 12 = 10
B in base 12 = 11
Char C undefined for radix
...
Char Z undefined for radix

Character Types
Call the Character class getType() method to determine the type of a character. Compare
the results of this function to one of the constants shown in the following list of character
type constants:

***Please lay out in multiple columns to save space. ***

COMBINING_SPACING_MARK

CONNECTOR_PUNCTUATION

CONTROL

CURRENCY_SYMBOL

DASH_PUNCTUATION

DECIMAL_DIGIT_NUMBER

ENCLOSING_MARK

END_PUNCTUATION

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

134

FORMAT

LETTER_NUMBER

LINE_SEPARATOR

LOWERCASE_LETTER

MATH_SYMBOL

MODIFIER_LETTER

MODIFIER_SYMBOL

NON_SPACING_MARK

OTHER_LETTER

OTHER_NUMBER

OTHER_PUNCTUATION

OTHER_SYMBOL

PARAGRAPH_SEPARATOR

PRIVATE_USE

SPACE_SEPARATOR

START_PUNCTUATION

SURROGATE

TITLECASE_LETTER

UNASSIGNED

UPPERCASE_LETTER

***End multiple-column layout. ***

The Character class defines these constants as byte values. Reference them using an
expression such as Character.MATH_SYMBOL.

Listing 8-17, ChType.java, demonstrates how to use the constants in the preceding list
along with the getType() method to determine the nature of several different characters.

Listing 8-17
ChType.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

135

001: class ChType {
002:
003: // Display type of ch (not all types listed)
004: public static void showType(char ch) {
005: int type = Character.getType(ch);
006: String s;
007: switch (type) {
008: case Character.UPPERCASE_LETTER:
009: s = "uppercase letter"; break;
010: case Character.LOWERCASE_LETTER:
011: s = "lowercase letter"; break;
012: case Character.DECIMAL_DIGIT_NUMBER:
013: s = "decimal digit number"; break;
014: case Character.OTHER_PUNCTUATION:
015: s = "punctuation symbol"; break;
016: case Character.MATH_SYMBOL:
017: s = "math symbol"; break;
018: case Character.CURRENCY_SYMBOL:
019: s = "currency symbol"; break;
020: default:
021: s = "unknown symbol";
022: }
023: System.out.println("char " + ch + " : " + s +
024: " (" + (int)ch + ")");
025: }
026:
027: public static void main(String args[]) {
028: showType('A');
029: showType('z');
030: showType('3');
031: showType('!');
032: showType('+');
033: showType('$');
034: showType('\u0123');
035: }
036: }

Running the program displays the types of the characters shown at lines 028-034. Notice
that the last of these statements passes a Unicode value in hexadecimal to the program's
showType() method. On screen, the program displays

char A : uppercase letter (65)
char z : lowercase letter (122)
char 3 : decimal digit number (51)
char ! : punctuation symbol (33)
char + : math symbol (43)
char $: currency symbol (36)
char ? : lowercase letter (291)

The values in parentheses are the Unicode values for each character. To obtain this value,
the program simply uses a type-cast expression (int)ch at line 024.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

136

Getting User Input
Now that you know how to use strings and characters, it's time to clarify an important
subject that will lead to more interesting sample programs — how to get input from users.
The following sections explain two basic techniques — how to prompt users to enter data
at the keyboard (usually in response to a prompt), and how to extract command-line
arguments entered after the program's name.

Prompting for Input
To read something a user typ es at the keyboard, use the technique shown in Listing 8-18,
InputString.java. The program uses a StringBuffer object to hold the results of your
typing. Each character is read by a call to System.in.read() (see line 010) in a while loop
that appends each character received until you press Enter or Return (or whatever it's
called on your keyboard). The program also shows how to import and catch any
IOException errors. This is not optional — you are required to catch IOException if
thrown by System.in.read().

Listing 8-18
InputString.java
001: import java.io.IOException;
002:
003: class InputString {
004: public static void main(String args[]) {
005: try {
006: StringBuffer buffer = new StringBuffer(64);
007: char ch;
008: // Prompt for and read a string
009: System.out.print("Type something: ");
010: while ((ch = (char)System.in.read()) != '\n')
011: buffer.append(ch); // Build string using ch
012: // Display string entered
013: System.out.println("You entered: " + buffer);
014: } catch (IOException e) { // Trap exception
015: System.out.println(e.toString()); // Display error
016: }
017: }
018: }

While certainly useful, the technique shown in Listing 8-18 is rarely needed in production
Java programs. We need it here for this book's sample programs, which as you know, run
at a terminal or DOS prompt. Most Java programs run either in a Web browser, or as a
stand-alone window-based application — environments that provide alternative input
methods (covered in Part IV, "Applets and Applications").

Note

Earlier versions of Java supported reading user input into an array of byte,
but this type of code no longer compiles in Java 2.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

137

Reading Command-Line Arguments
Users may also pass data to Java applications by entering one or more arguments after the
program name. Listing 8-19, CommandLine.java, shows the basic techniques.

Listing 8-19
CommandLine.java
001: class CommandLine {
002: public static void main(String args[]) {
003: System.out.println("Number of arguments = " + args.length);
004: for (int i = 0; i < args.length; i++) {
005: System.out.println(args[i]);
006: }
007: }
008: }

After compiling the program, run it with a command such as

java CommandLine Arg MoreArgs LastArg

The program displays the number of arguments and echoes their text:

Number of arguments = 3
Arg
MoreArgs
LastArg

All command-line arguments, if any, are stored in the args[] String array passed to the
main() method. Line 002 declares this parameter. The expression args.length (see line
004) tells you how many argument strings are in the array. If this value is zero, the user
typed no arguments.

Summary
* Use the String class for string objects that will not change during the course of a

program. String objects are immutable.

* Use the StringBuffer class for string objects that are likely to change in size or
content. StringBuffer objects are mutable.

* The String and StringBuffer classes are not directly related to each other, although
both are derived from Object. Both classes provide numerous methods you can
call to perform many operations on string data.

* The Character wrapper class puts an object-oriented face on Java's native char
data type. You will most often use the Character class's static methods such as
isLowerCase() to determine the nature of characters.

* This chapter shows how to call System.in.read() to read user input into a
StringBuffer object. Since most Java programs run in a Web browser or in a
graphical window, this input technique is of limited use, although it is needed for
this book's relatively simple programming examples.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

138

* Another way to get user input is to use the args[] String array declared for an
application's main() method. Use this technique to extract command-line
arguments typed at the terminal or DOS prompt.

Chapter 9 Numeric Classes

Java's Math and numerical classes make even tough math chores as easy as counting on
your fingers and toes. In this chapter, you take a close look at Java's mathematical classes
and methods, random numbers, and numerical wrapper classes that put an object-oriented
face on built-in types such as int and double.

In This Chapter

* Using the Math utility class

* Using the Random class

* Creating random-number generators

* Programming with numerical wrapper classes

The Math Class
Java's Math class provides numerous methods that you can call to perform a variety of
mathematical operations. Listing 9-1 shows the Math class's constructor, constant
declarations, and methods. Refer to this listing while reading the following sections.

Note

The Math class is automatically imported into every Java application. You
do not need an import statement to use this class.

Listing 9-1
Math.txt
001: // Math class constructor
002: private Math() {}
003:
004: // Math class constants
005: public static final double E = 2.7182818284590452354;
006: public static final double PI = 3.14159265358979323846;
007:
008: // Math class methods
009: public static double sin(double a);
010: public static double cos(double a);
011: public static double tan(double a);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

139

012: public static double asin(double a);
013: public static double acos(double a);
014: public static double atan(double a);
015: public static double toRadians(double angdeg);
016: public static double toDegrees(double angrad);
017: public static double exp(double a);
018: public static double log(double a);
019: public static double sqrt(double a);
020: public static double IEEEremainder(double f1, double f2);
021: public static double ceil(double a);
022: public static double floor(double a);
023: public static double rint(double a);
024: public static double atan2(double a, double b);
025: public static double pow(double a, double b);
026: public static int round(float a);
027: public static long round(double a);
028: public static double random();
029: public static int abs(int a);
030: public static long abs(long a);
031: public static float abs(float a);
032: public static double abs(double a);
033: public static int max(int a, int b);
034: public static long max(long a, long b);
035: public static float max(float a, float b);
036: public static double max(double a, double b);
037: public static int min(int a, int b);
038: public static long min(long a, long b);
039: public static float min(float a, float b);
040: public static double min(double a, double b);

Math Class Constructor
The Math class constructor is declared private to the class (see Listing 9-1, line 002).
This means that any attempt to create a Math class object fails to compile:

Math m = new Math(); // ??? Can't do this

It is highly unusual to declare a constructor private, but in doing so, you effectively
prevent any objects of the class from being created. Because all of the Math class's
constants and methods are static, they are used in reference to the class itself, and you
never need to construct a Math object. This is a good technique to remember for your
own classes that provide static methods, and that you don't want used to create objects.

Math Fields
The Math class declares two static fields, or constants, E and PI (see lines 005-006). The
double field E represents the base of the natural logarithms. The double field PI
represents the value of p. The following statements (which you can insert in a test main()
method)

System.out.println("E = " + Math.E);
System.out.println("Pi = " + Math.PI);

display these values:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

140

E = 2.71828
Pi = 3.14159

Internally, however, the values are more accurately rep resented as the double values E =
2.7182818284590452354 and PI = 3.14159265358979323846 respectively.

Math Utility Methods
The Math class provides a bunch of utility methods that perform miscellaneous
mathematical operations. Some of these are overloaded so you can pass them different
types of arguments. For example, there are four versions of method abs(). That's not short
for abdominal muscles, but for absolute value.

Use the abs() methods in formulas requiring positive values when the argument might be
negative. For example, suppose an integer value is positive or negative as a result of
some other operation. To ensure a positive value, perhaps for using the integer as a
character, call Math.abs() as in Listing 9-2, AbsValue.java.

Listing 9-2
AbsValue.java
001: class AbsValue {
002: public static void main(String args[]) {
003: int v = –100;
004: char ch = (char)Math.abs(v);
005: System.out.println("char(" + Math.abs(v) + ") = " + ch);
006: }
007: }

The statement at line 004 casts the absolute value of integer v into a char and assigns it to
ch. The result is the lowercase @@spd@@sp in ch. Running the program displays

char(100) = d

Other forms of abs() permit double, float, and long arguments. Similarly overloaded are
the min() and max() methods, which compare double, float, int, and long values, and
return the minimum or maximum of two arguments. Listing 9-3, MinMax.java,
demonstrates the methods.

Listing 9-3
MinMax.java
001: class MinMax {
002: public static void main(String args[]) {
003: long v1 = 99;
004: long v2 = v1 * 2;
005: System.out.println("v1=" + v1 + " v2=" + v2);
006: System.out.println("Maximum value = " + Math.max(v1, v2));
007: System.out.println("Minimum value = " + Math.min(v1, v2));
008: }
009: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

141

Lines 006 and 007 show how to call Math.max() and Math.min() to find the maximum
and minimum of two arguments. Running the program displays

v1=99 v2=198
Maximum value = 198
Minimum value = 99

Two other utility methods find the smallest or largest integer value closest to a floating
point value. Math.ceil() returns the closest integer value greater or equal to (at the ceiling
of) a given floating point value. The floor() method returns the closest integer less than or
equal to (at the floor of) a floating point value. Listing 9-4, CeilFloor.java, demonstrates
the methods:

Listing 9-4
CeilFloor.java
001: class CeilFloor {
002: public static void main(String args[]) {
003: double d = 10.0;
004: while (d < 11.0) {
005: System.out.println("d=" + d + " ceil(d)=" + Math.ceil(d) +
006: " floor(d)=" + Math.floor(d));
007: d += 0.1;
008: }
009: }
010: }

Running the program displays the ceiling and floor values for a double variable d,
ranging from 10.0 to 10.9. The program's display, shortened by several lines here, also
shows that the floating point representation of d + 0.1 is close, but not exactly, what you
might expect (this is not a bug, but a normal characteristic of floating point
representation):

d=10.0 ceil(d)=10.0 floor(d)=10.0
d=10.1 ceil(d)=11.0 floor(d)=10.0
d=10.2 ceil(d)=11.0 floor(d)=10.0
d=10.299999999999999 ceil(d)=11.0 floor(d)=10.0
...
d=10.999999999999996 ceil(d)=11.0 floor(d)=10.0

Some other methods — which if you are mathematically inclined you will no doubt find
valuable — are exp(), which returns E to the power of its double argument, and log(),
which returns the natural logarithm of its double argument. Use pow() to raise any value
to any exponent, as Listing 9-5, PowerDemo.java, demonstrates.

Listing 9-5
PowerDemo.java
001: class PowerDemo {
002: public static void main(String args[]) {
003: if (args.length < 2) {
004: System.out.println("Enter two values as follows:");
005: System.out.println("java PowerDemo 2 8");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

142

006: } else {
007: try {
008: int j = Integer.parseInt(args[0]);
009: int k = Integer.parseInt(args[1]);
010: System.out.println(j + " ^^ " + k + " = " + Math.pow(j, k));
011: }
012: catch (NumberFormatException e) {
013: System.out.println("Error in argument " + e.getMessage());
014: }
015: }
016: }
017: }

Compile and run the program using commands such as

javac PowerDemo.java
java PowerDemo 2 8

The second command displays the value of 2 to the 8th power:

2 ^^ 8 = 256.0

The program also shows how to pick up integer command-line arguments, parsing the
strings to int values (see lines 008 and 009). This technique uses the parseInt() method in
the Integer wrapper class, covered later in this chapter. The method throws
NumberFormatException for an illegal argument. To see how this is handled, enter a
command such as follows:

java PowerDemo 2 X
Error in argument X

Two other utility methods fall into the miscellaneous category. Use IEEEremainder() to
compute the IEEE remainder of the division of two floating point arguments,
demonstrated in Listing 9-6, Remainder.java.

Listing 9-6
Remainder.java
001: class Remainder {
002: public static void main(String args[]) {
003: double arg1 = 3.14159;
004: double arg2 = 2;
005: double result = Math.IEEEremainder(arg1, arg2);
006: System.out.println(arg1 + " / " + arg2 + " = " + result);
007: }
008: }

Running the program displays the following:

3.14159 / 2.0 = –0.8584100000000001

The result does not equal the modulo value of arg1 divided by arg2, as you might expect.
If that's what you need, use the modulo operator instead of calling the IEEEremainder()
method:

double result = arg1 % arg2;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

143

That displays

3.14159 / 2.0 = 1.1415899999999999

Finally in the miscellaneous utility category is a method that computes the square root of
a double argument. This statement displays the square root of 2:

System.out.println("Square root of 2 = " + Math.sqrt(2));

Math Rounding Methods
There are three methods in the Math class for rounding double and float values. The first,
rint(), returns a double value for a double argument. Two overloaded round() methods
each take a floating point argument and return the equivalent rounded integer. Note the
different types in the two methods:

public static int round(float a);
public static long round(double a);

The int method accepts a float argument. It can't take a double argument because
overloaded methods must differ in at least one parameter data type. The long method
accepts a double argument. Be sure to use appropriate data types, or the compiler may
report the error "possible loss of precision." This happens if, for example, you pass a
double variable to round() but assign the result to an int instead of a long. Listing 9-7,
Round.java, demonstrates the three rounding methods in the Math class and also shows at
line 005 how to use a type-cast expression to avoid the compilation error. Line 006,
however, is preferred because it assigns the result to a long variable.

Listing 9-7
Round.java
001: class Round {
002: public static void main(String args[]) {
003: double arg = 3.14159;
004: double doubleResult = Math.rint(arg);
005: int intResult = (int)Math.round(arg);
006: long longResult = Math.round(arg);
007: System.out.println("double rint(arg) = " + doubleResult);
008: System.out.println("(int)round(arg) = " + intResult);
009: System.out.println("(long)round(arg) = " + longResult);
010: }
011: }

Running the program displays

double rint(arg) = 3.0
(int)round(arg) = 3
(long)round(arg) = 3

Math Trigonometry Methods
The Math class provides the usual set of methods for computing the sine, cosine, tangent,
and other trigonometry functions. Each of these takes a double argument and returns type
double. The methods are simple to use, but a demonstration program shows an interesting

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

144

factor in using these and all floating point methods. Listing 9-8, CosDemo.java, displays
the cosine values for –1.0 through 1.0.

Listing 9-8
CosDemo.java
001: class CosDemo {
002: public static void main(String args[]) {
003: double fp, result;
004: for (fp = –1.0; fp <= 1.0; fp += 0.1) {
005: result = Math.cos(fp);
006: System.out.println("fp = " + fp + ", cosine = " + result);
007: }
008: }
009: }

When you run the program, you'll see the following lines on screen (I deleted some lines
to save space):

fp = –1.0, cosine = 0.5403023058681398
fp = –0.9, cosine = 0.6216099682706644
fp = –0.8, cosine = 0.6967067093471654
...
fp = –1.3877787807814457E–16, cosine = 1.0
...
fp = 0.8999999999999998, cosine = 0.6216099682706646
fp = 0.9999999999999998, cosine = 0.5403023058681399

As this shows, the value for zero (essentially computed in the sample program as –0.1 +
0.1) is not necessarily 0.0 (see the line marked in bold). The result is a very small value
that is close to zero and will probably compare equally to 0.0 in an expression — the
cosine result for zero is correct — but it is not physically zero (all bits set to zero) as you
might reasonably assume.

Tip

Remember always that floating point values might be only approximately
accurate.

Math Random Method
It always interests me that, in such an orderly and methodical business as computer
programming, randomness intrigues programmers like no other subject. With all the
effort spent writing code to put values in order, an equal amount of time (if not more) is
spent scrambling everything up — or, I should say, creating a true random sequence.

Call the Math class's random() method for the next double value between 0 and 1 in a
presumed arbitrary sequence. Listing 9-9, RandomDemo.java, demonstrates how to use
the method.

Listing 9-9

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

145

RandomDemo.java
001: class RandomDemo {
002: public static void main(String args[]) {
003: double doubleResult;
004: int intResult;
005: for (int i = 1; i < 10; i++) {
006: doubleResult = Math.random();
007: System.out.print(doubleResult + " \t");
008: intResult = (int)(doubleResult * 100);
009: System.out.println(intResult);
010: }
011: }
012: }

The sample program displays ten random floating point values. It also demonstrates a
way to convert the double values to integers. Here's a portio n of one program run:

Floating point values Integer values
0.26218545605972865 26
0.41877027636959074 41
0.2099903858228669 20
0.9878354983452603 98
0.04033550145685827 4

Math.random() returns a value r such that

0.0 <= r < 1.0

The method produces a different sequence each time a program using it is started. To
produce random integer values, multiply by an arbitrary factor and round the result, or
simply cast the result to type int or long (or another integer type). For example, line 008
multiplies the double result by 100 and then casts that value to type int. Parentheses carry
out the multiplication before the type conversion.

Although Math.random() is certainly a handy method, more exacting needs require a
more sophisticated generator. See the discussion of the Random class in the following
section if you need additional random-number capabilities.

The Random Class
Use the Random class when you need random-number capabilities beyond the simple
floating point sequences that the Math. random() method produces. Each instance of the
Random class creates a unique pseudo-random-number generator. You can also create
repeatable random sequences by seeding a Random generator object — useful for testing
programs based on random numbers. Listing 9-10 shows the Random class constructors
and public declarations.

Listing 9-10
Random.txt
001: // Random class constructors

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

146

002: public Random();
003: public Random(long seed);
004:
005: // Random class methods
006: synchronized public void setSeed(long seed);
007: public void nextBytes(byte[] bytes);
008: public int nextInt();
009: public int nextInt(int n);
010: public long nextLong();
011: public float nextFloat();
012: public double nextDouble();
013: synchronized public double nextGaussian();

Note

The Random class is based on an algorithm called the linear congruential
method attributed to D. H. Lehmer and explained in Donald E. Knuth's Art
of Computer Programming, vol. 2 (Addison-Wesley, 1997).

Constructing Random Number Generators
The Random class provides two constructors. Use them to create objects that you might
think of as random-number-generator factories. First import the class from java.util using
this statement near the beginning of the source code file:

import java.util.Random;

Then, inside a method such as main(), call Random's default constructor to create the
generator object:

Random generator = new Random();

That seeds the generator using the current date and time in milliseconds, guaranteeing a
different sequence for each new object, and each new program run. Alternatively, you
may supply a seed value to the constructor:

Random generator = new Random(1234);

Constructed like that, the generator object begins the same random sequence every time
the program executes this statement. As mentio ned, this can be helpful when debugging
programs in order to ensure the same random data on each run.

Note

Repeated numeric sequences can still be random, even though their
values are identical, because it is the distribution of values in the
sequence that determines its randomness, not the particular set of values.
(Without getting too technical, in other words, a number is considered
random if it cannot be predicted statistically from those numbers that are
generated before.)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

147

Random Class Methods
After constructing the Random object, you can call various methods to obtain numbers at
random. For example, Listing 9-11, RandGen.java, displays a table of random floating
point or integer values.

Listing 9-11
RandGen.java
001: import java.util.Random;
002:
003: class RandGen {
004: public static void main(String args[]) {
005: Random generator = new Random();
006: int rows, cols;
007: StringBuffer buffer;
008: for (rows = 1; rows <= 8; rows++) {
009: buffer = new StringBuffer(128);
010: for (cols = 1; cols <= 3; cols++) {
011: buffer.append(generator.nextDouble() + " \t");
012: // buffer.append(generator.nextInt() + " \t");
013: }
014: System.out.println(buffer);
015: }
016: }
017: }

The program builds each row of its output by appending values and tab control characters
into a StringBuffer object. Running the program displays a table such as the following
(shortened here to save room):

0.8698866164685745 0.1394602179807719 0.547958400488095
0.3368385654088868 0.20612391761001359 0.42516370464157494
...
0.17060159546084008 0.6867922191959271 0.8405425994020024

To create an integer table, delete line 011 and the comment symbol in front of line 012,
compile, and run. Now the table looks like this:

135895775 2117998577 890454722
1601399493 –684065780 –2100152423
...
644254617 –2111290244 2083412152

For the next floating point value in a random sequence, call the nextDouble() method as
demonstrated at line 011. For the next integer value, call nextInt() as on the next line.
Notice that positive and negative integers are generated. However, double values are
from 0.0 up to but not including 1.0. Similar methods, nextLong() and nextFloat(),
produce long and float values respectively.

Finally, you can call the rarely needed, but possibly useful, nextBoolean() method to get
a true or false value selected randomly, perhaps in a coin toss simulation:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

148

Random gen = new Random();
Boolean heads = gen.nextBoolean();

Random Integer Ranges
One typical problem when using random integers is how to produce a sequence from 0 up
to but not including a higher value, call it N. Any other sequence can be extrapolated by
subtracting or adding a constant to the resulting values. This might seem to be a simple
modulo N operation, but that can skew the results and make them anything but random.
The Random class goes to some extremes to produce a statistically random sequence
within a specified integer range.

To use this method, pass an integer constant to the overloaded nextInt() method. For
example, to assign an integer at random between 0 and 99 inclusive, use statements such
as:

Random gen = new Random();
int k;
...
k = gen.nextInt(100); // 0 .. 99

Random Byte Blocks
Using a Random class method, nextBytes(), you can fill an array of bytes with values
chosen at random. This is sometimes helpful in creating test data. Although the code isn't
hard to write, the Random class provides it for you, so you might as well use the method.
Additionally, the class ensures that the values are evenly distributed, which might not be
the case if you simply take 8 bits out of every randomly generated int or long value.
Listing 9-12, RandomBytes.java, demonstrates how to use the method.

Listing 9-12
RandomBytes.java
001: import java.util.Random;
002:
003: class RandomBytes {
004: static int SIZE = 64; // Number of bytes to generate
005: static byte byteArray[]; // The array of bytes
006:
007: // Display byte array
008: public static void showArray(String label) {
009: System.out.println("\n\n" + label);
010: for (int i = 0; i < byteArray.length; i++) {
011: if (i % 8 == 0)
012: System.out.println(); // Start new row
013: else
014: System.out.print('\t'); // Start new column
015: System.out.print(byteArray[i]);
016: }
017: }
018:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

149

019: public static void main(String args[]) {
020: Random generator = new Random();
021: byteArray = new byte[SIZE];
022: showArray("Before randomizing");
023: generator.nextBytes(byteArray); // Fill array
024: showArray("After randomizing");
025: }
026: }

Lines 004 and 005 declare two static values, SIZE equal to the number of bytes to
generate, and byteArray, an array of SIZE bytes. (See Chapter 10, "Arrays," for more on
arrays.) The static method at lines 008-017 displays the bytes in byteArray in a row and
column table. Omitting some lines to save space, running the program displays the
following two tables:

Before randomizing
0 0 0 0 0 0 0 0
...
0 0 0 0 0 0 0 0

After randomizing
–111 127 –78 26 118 –87 –41 –60
...
40 –2 121 –15 –83 86 63 58

The program also shows that, before filling the array, Java initializes its values to zero.
Line 020 creates a random number generator object using the Random class's default
constructor. Line 023 calls the nextBytes() method for that object to fill byteArray with
bytes selected randomly.

Other Random Methods
Finally, in the Random class are two miscellaneous methods (refer back to Listing 9-10).
Call method setSeed() with a long argument to start a new random sequence for an
existing Random object. This is useful for restarting a random number sequence without
constructing a new object, as Listing 9-13, RandomSeed.java, demonstrates.

Listing 9-13
RandomSeed.java
001: import java.util.Random;
002:
003: class RandomSeed {
004: static long SEED = 12345;
005: public static void main(String args[]) {
006: Random generator = new Random(SEED);
007: System.out.println("\nInitial sequence:");
008: for (int i = 0; i < 32; i++)
009: System.out.print(generator.nextInt(100) + " \t");
010: generator.setSeed(SEED); // Reseed the generator
011: System.out.println("\n\nAfter reseeding generator:");
012: for (int i = 0; i < 32; i++)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

150

013: System.out.print(generator.nextInt(100) + " \t");
014: }
015: }

Running the program displays two tables of integer values selected at random, using for
loops at lines 008 and 012. The Random object is constructed at line 006. Line 010 calls
setSeed() to reset that object to start the same sequence over, using the static long SEED
value initialized at line 004. On screen, you see two tables, each with the same values (I
show only the first table here):

Initial sequence:
51 80 41 28 55 84 75 2 1 89
17 42 90 6 12 84 87 3 32 75
1 51 92 16 28 81 25 43 71 39
29 97

Finally in the Random class, you'll find the method nextGaussian(), which generates a
random distributed value of type double with a mean of 0.0 and standard deviation of 1.0.
The algorithm used to produce this value is defined in Donald Knuth's Art of Computer
Science series, section 3.4.1, section C, algorithm P.

Numerical Wrapper Classes
As you learned from the discussion of the Character class in Chapter 8, "String Things," a
wrapper class puts an object-oriented face on a native data type. In addition to Character,
Java provides the wrapper classes Boolean, Byte, Short, Integer, Long, Float, and Double
for, respectively, the boolean, byte, short, int, long, float, and double native data types.
Except for the Boolean class, discussed first in this section, the wrapper classes share
many of the same or similar methods, and once you know how to use one, you can easily
figure out how to use the others.

Tip

Wrapper class names are capitalized; native types are not. For example,
Boolean refers to the wrapper class for the boolean data type. The one
exception is the Integer class, which represents native int values. There is
no Int wrapper class.

The Boolean Wrapper Class
Listing 9-14 shows Java's Boolean wrapper class public declarations. As with similar
listings in this chapter, the text file contains no code and cannot be compiled.

Listing 9-14
Boolean.txt
001: // Boolean wrapper class fields
002: public static final Boolean TRUE;
003: public static final Boolean FALSE;
004:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

151

005: // Boolean wrapper class constructors
006: public Boolean(boolean value);
007: public Boolean(String s);
008:
009: // Boolean wrapper class methods
010: public boolean booleanValue();
011: public static Boolean valueOf(String s);
012: public String toString();
013: public int hashCode();
014: public boolean equals(Object obj);
015: public static boolean getBoolean(String name);

Two static fields provide the object-oriented equivalents of Java's native true and false
values. The constants, TRUE and FALSE (see lines 002-003) are spelled in all uppercase.
They are objects of the Boolean wrapper class; they are not boolean values.

When using the Boolean as well as other wrapper classes, it's important to keep straight
on whether you are using objects or native values. For example, Listing 9-15,
BooleanDemo.java, demonstrates the differences between using a wrapper object and a
native boolean variable.

Listing 9-15
BooleanDemo.java
001: class BooleanDemo {
002: public static void main(String args[]) {
003: // Shows that TRUE and FALSE are objects
004: Boolean boolObject = new Boolean(true);
005: if (boolObject.equals(Boolean.TRUE))
006: System.out.println("boolObject is true");
007: // But that true and false are native values
008: boolean boolValue = true;
009: if (boolValue = Boolean.TRUE.booleanValue())
010: System.out.println("boolValue is true");
011: }
012: }

The program constructs a Boolean class object at line 004 using the statement

Boolean boolObject = new Boolean(true);

The class has no default constructor — you must specify an initial value such as true.
Following this, an if statement tests whether the object is true:

if (boolObject.equals(Boolean.TRUE))...

You cannot simply use an equate expression. You must instead call a method such as
equals(), and compare the objects with TRUE or FALSE, which are themselves objects.
Contrast this with the second half of the sample program, which uses a convoluted
technique to test whether a native boolean value is true or false:

if (boolValue = Boolean.TRUE.booleanValue())...

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

152

I'm not suggesting you actually do that, but the statement proves that TRUE is an object,
and as such, it may be used to call a Boolean class method such as booleanValue(). That
method returns the object's native true or false value.

Another way to construct a Boolean object is to pass it a string, as in this example:

Boolean boolObject = new Boolean("True");

Use this form to convert strings, either entered at the keyboard or taken from a command-
line argument. For example, this statement

Boolean boolObject = new Boolean(args[0]);

constructs a Boolean object using a command-line argument, which you might pass to a
program by typing

java YourProgram True

You must spell the word True in full, but case is ignored. The word False or any other
string value is considered to be false.

One common use for the Boolean wrapper class is to convert a string to a Boolean object
value. Call the static valueOf() method to translate a string into a Boolean object. The
statement

Boolean boolObject = Boolean.valueOf(args[0]);

constructs boolObject by parsing a command -line string and calling the static valueOf().
To further convert a string to a native boolean value, call the object's booleanValue()
method like this:

boolean boolValue = Boolean.valueOf(args[0]).booleanValue();

This might seem complex, but it simply translates a command-line argument (or any
other String or StringBuffer object) to a Boolean object, using the valueOf() method.
That result is then translated to a native boolean value by calling booleanValue(), which
is assigned to the boolValue variable.

To go the other direction — converting a Boolean object to a string — call the toString()
method. For example, the output statement

System.out.println(boolObject.toString());

displays true or false depending on the value of the Boolean class object, boolObject. The
resulting string is all lowercase. All wrapper classes — in fact most all Java classes —
provide a toString() method.

Finally, the Boolean class provides getBoolean() to test boolean system properties. The
method returns true if a specified property exists, and if that property's value is the string
@@dptrue@@dp. All other values return false. Listing 9-16, GetProperty.java,
demonstrates how to use the method.

Listing 9-16
GetProperty.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

153

001: class GetProperty {
002: static String DEBUGGINGPROP = "Debugging.prop";
003: static String NAMEPROP = "Program.name.prop";
004: static String NAMEVALUE = "GetProperty";
005:
006: public static void main(String args[]) {
007: System.setProperty(DEBUGGINGPROP, "true"); // Boolean prop
008: System.setProperty(NAMEPROP, NAMEVALUE); // Other prop
009:
010: boolean result;
011: String valueStr;
012:
013: // Get true or false value of boolean property
014: result = Boolean.getBoolean(DEBUGGINGPROP);
015: System.out.println(DEBUGGINGPROP + " = " + result);
016:
017: // Get value of non-boolean property
018: valueStr = System.getProperty(NAMEPROP);
019: result = Boolean.getBoolean(NAMEPROP);
020: System.out.println(NAMEPROP + " value = " + valueStr);
021: System.out.println(NAMEPROP + " result = " + result);
022: }
023: }

Lines 002-004 define a few string constants. Line 007 calls System.setProperty() to set
DEBUGGINGPROP to @@dptrue@@dp. Notice that this value is a string, not a
boolean value. Line 008 sets another property and value to identify the program's name.
Because the first property value is the string @@dptrue@@dp, Boolean.getBoolean()
returns true, and the program displays

Debugging.prop = true

To get a non-boolean property value, call System.getProperty() as in the demonstration
program at line 018. For this statement, the program displays

Program.name.prop value = GetProperty

However, because the second property value is neither @@dptrue@@dp nor
@@dpfalse@@dp, Boolean.getBoolean() at line 019 returns false and causes the
program to display

Program.name.prop result = false

The following list shows the system property strings that you can pass to
System.getProperty() as demonstrated at line 023 in the sample program:

*** Please lay out in multiple columns to save space. Thanks. . ***

file.separator

java.class.path

java.class.version

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

154

java.ext.dirs

java.home

java.specification.name

java.specification.vendor

java.specification.version

java.vendor

java.vendor.url

java.version

java.vm.name

java.vm.specification.name

java.vm.specification.vendor

java.vm.specification.version

java.vm.vendor

java.vm.version

line.separator

os.arch

os.name

os.version

path.separator

user.dir

user.home

user.name

End multi-column layout. ***

All Java implementations are expected to recognize at least these properties, although
some might not produce useable results depending on the system. For instance, the
user.name under Windows 98 is simply "default."

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

155

The Integer Wrapper Class
The Integer wrapper class is representative of other integer wrappers, Byte, Short, and
Long. Listing 9-17 shows the declarations that are common to all four of these classes.

Listing 9-17
IntCommon.txt
001: // Common to Short, Byte, Integer, and Long classes
002: public byte byteValue();
003: public short shortValue();
004: public int intValue();
005: public long longValue();
006: public float floatValue();
007: public double doubleValue();
008: public String toString();
009: public int hashCode();
010: public boolean equals(Object obj);
011: public int compareTo(Object o);

The methods with the word Value in them — intValue() for example — are extended
from the abstract Number class, from which all numeric wrapper classes are derived.
(You learn more about abstract classes in the aptly named Chapter 11, "Abstract
Classes.") Java uses the value methods to convert values from one type to another. You
can call them, but most often you'll simply use a type-cast expression as in the following,
which converts an int to a long value:

int intValue = 123;
long longValue = (long)intValue;

To do that using a wrapper class, you can use a statement such as

Integer intObject = new Integer(123);
long longValue = intObject.longValue();

Of more practical value is the common toString() method (see line 008), which returns a
string representation of the object's value. Again, the conversion to a string is automatic,
which you've seen in this book's sample output statements such as

int k = 123;
System.out.println("k = " + k);

However, you may use an object to represent the integer value, and call toString for its
string representation:

Integer intObject = new Integer(123);
System.out.println("intObject = " + intObject.toString());

The hashCode(), equals(), and compareTo() methods are also shared by all numeric
wrapper classes. The chapters in Part III, "Collections," explain how to use hash codes
along with collection (container) objects. The other two methods make it possible to
compare a numeric object with any other object, assuming that such comparison is a
reasonable operation to perform.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

156

In addition to their shared methods, the numeric wrapper classes provide two constants
— MIN_VALUE and MAX_VALUE — that indicate the range of allowable values for
objects of each type. The fields are static and, as such, may be called in reference to their
respective classes; you don't have to declare an object to get to the values. For example,
the following statement displays the maximum allowed integer value:

System.out.println("Max integer = " + Integer.MAX_VALUE);

Replace Integer with Byte, Short, Long, Double, or Float to find those maximums. Print
MIN_VALUE to find the minimum allowed values for any of these types.

Listing 9-18, Integer.txt, shows the public non-common methods in the Integer wrapper
class.

Listing 9-18
Integer.txt
001: // Integer wrapper class constructors
002: public Integer(int value);
003: public Integer(String s);
004:
005: // Integer wrapper class methods
006: public static String toString(int i, int radix);
007: public static String toHexString(int i);
008: public static String toOctalString(int i);
009: public static String toBinaryString(int i);
010: public static String toString(int i);
011: public static int parseInt(String s, int radix);
012: public static int parseInt(String s);
013: public static Integer valueOf(String s, int radix);
014: public static Integer valueOf(String s);
015: public int compareTo(Integer anotherInteger);
016:
017: // Integer wrapper class property methods
018: public static Integer getInteger(String nm);
019: public static Integer getInteger(String nm, int val);
020: public static Integer getInteger(String nm, Integer val);
021: public static Integer decode(String nm);

The class has two constructors, one that takes an int value as an argument, and another
that takes a string. The string constructor is particularly useful for converting command-
line arguments to integer values:

Integer intObject = new Integer(args[0]);

Some of the most useful methods in the Integer wrapper class convert values to String
objects, and also parse strings into values formatted for a specific number base — for
example, octal. Listing 9-19, ConvertInt.java, demonstrates how to use these methods.
You can use similar techniques with the Long wrapper class.

Listing 9-19
ConvertInt.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

157

001: class ConvertInt {
002: public static void main(String args[]) {
003: if (args.length < 1)
004: System.out.println("ex. java ConvertInt 1234");
005: else
006: try {
007: int intValue = Integer.parseInt(args[0]);
008: System.out.println("Default = "
009: + Integer.toString(intValue));
010: System.out.println("Hex = "
011: + Integer.toHexString(intValue));
012: System.out.println("Octal = "
013: + Integer.toOctalString(intValue));
014: System.out.println("Binary = "
015: + Integer.toBinaryString(intValue));
016: System.out.println("base 32 = "
017: + Integer.toString(intValue, 32));
018: } catch (NumberFormatException e) {
019: System.out.println(
020: "Format error in argument " + e.getMessage());
021: }
022: }
023: }

The sample program calls Integer methods such as toString() and toHexString() to
convert a command-line argument to various string formats. For example, running the
program with the following command displays the entered value in hexadecimal, octal,
binary, and base 32 formats:

java ConvertInt 1234
Default = 1234
Hex = 4d2
Octal = 2322
Binary = 10011010010
base 32 = 16i

Lines 018-020 in Listing 9-18, Integer.txt, show three overloaded Integer methods,
getInteger(). These are intended for use with system property settings; those with any
associated integer values. If your system defines any such properties, this method and its
variations provide the means to read them.

Finally in the Integer class is a static method decode(), which parses a formatted string in
decimal, hexadecimal, or octal. Because decode() is static, you call it in reference to the
Integer class. You don't need to create an Integer object. The following statements
demonstrate how to use decode():

int k;
k = Integer.decode("1234"); // decimal
k = Integer.decode("0x1234"); // hexadecimal
k = Integer.decode("#1234"); // hexadecimal
k = Integer.decode("01234"); // octal

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

158

Digit characters from 1 through 9 are considered to be decimal. The prefaces 0x and #
indicate a value in hexadecimal. Values starting with 0 are octal.

The Long Wrapper Class
Listing 9-20 shows Java's Long wrapper class, which represents long native values in
class form. The Long class is similar to Integer, and most methods are the same, except
that parseInt() is named parseLong(), and method return values are type long. As with
other listings in this section, the listing here shows only the public non-common methods
in the wrapper class.

Listing 9-20
Java's Long wrapper class
001: // Long wrapper class constructors
002: public Long(long value);
003: public Long(String s);
004:
005: // Long wrapper class methods
006: public static String toString(long i, int radix);
007: public static String toHexString(long i);
008: public static String toOctalString(long i);
009: public static String toBinaryString(long i);
010: public static String toString(long i);
011: public static long parseLong(String s, int radix);
012: public static long parseLong(String s);
013: public static Long valueOf(String s, int radix);
014: public static Long valueOf(String s);
015: public static Long decode(String nm);
016: public int compareTo(Long anotherLong);
017:
018: // Long wrapper class property methods
019: public static Long getLong(String nm);
020: public static Long getLong(String nm, long val);
021: public static Long getLong(String nm, Long val);

The Byte Wrapper Class
Listing 9-21, Byte.txt, shows the constructors and public non-common methods for the
Byte wrapper class. You can use this class in much the same ways as Integer and Long,
but it doesn't support the formatted string methods for converting from hexadecimal and
octal.

Listing 9-21
Byte.txt
001: // Byte wrapper class constructors
002: public Byte(byte value);
003: public Byte(String s);
004:
005: // Byte wrapper class methods

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

159

006: public static String toString(byte b);
007: public static byte parseByte(String s);
008: public static byte parseByte(String s, int radix);
009: public static Byte valueOf(String s, int radix);
010: public static Byte valueOf(String s);
011: public static Byte decode(String nm);
012: public int compareTo(Byte anotherByte);

The Short Wrapper Class
The Short wrapper is nearly identical to Byte, but specifies short integer values for
method parameters and return results. Listing 9-22, Short.txt, shows the constructors and
public non-common methods for the Short wrapper class.

Listing 9-22
Short.txt
001: // Short wrapper class constructors
002: public Short(short value);
003: public Short(String s);
004:
005: // Short wrapper class methods
006: public static String toString(short s);
007: public static short parseShort(String s);
008: public static short parseShort(String s, int radix);
009: public static Short valueOf(String s, int radix);
010: public static Short valueOf(String s);
011: public static Short decode(String nm);
012: public int compareTo(Short anotherShort);

The Float Wrapper Class
For working with floating point values as objects, Java provides the two wrapper classes
Float and Double. Like the integer wrappers, these two classes provide the methods
shown in Listing 9-17, IntCommon.txt, which are inherited from the abstract Number
class. In addition, Float and Double share the declarations listed here in Listing 9-23,
FloatCommon.txt

Listing 9-23
FloatCommon.txt
001: // Common to Float and Double classes
002: public static final double POSITIVE_INFINITY;
003: public static final double NEGATIVE_INFINITY;
004: public static final double NaN;
005: public static final double MAX_VALUE;
006: public static final double MIN_VALUE;
007: public boolean isNaN();
008: public boolean isInfinite();

The five static fields at lines 002-006 represent useful boundary values. As already
mentioned, NaN means "not a number," and is used to represent an illegal result such as

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

160

dividing a floating point value by another NaN value. Although the Float and Double
classes share these same fields, they are type float in the Float class, and type double in
the Double class.

The two public methods, isNan() and isInfinite(),inspect whether a Float or Double object
is not a valid number, or is infinite (and therefore also invalid):

Float floatObject = new Float(3.14159 / Float.NaN);
if (floatObject.isNaN())
 System.out.println("object is NaN");

Listing 9-24 shows the constructors and public non-common methods in the Float
wrapper class. Notice there are three constructors — two for constructing a Float object
from a float or double value, and one for constructing the object from a string.
Constructing a Float object from a double value may result in a loss of precision.

Listing 9-24
Float.txt
001: // Float wrapper class constructors
002: public Float(float value);
003: public Float(double value);
004: public Float(String s);
005:
006: // Float wrapper class methods
007: public static String toString(float f);
008: public static Float valueOf(String s);
009: public static float parseFloat(String s);
010: static public boolean isNaN(float v);
011: static public boolean isInfinite(float v);
012: public int compareTo(Float anotherFloat);
013:
014: // Float wrapper class bit converters
015: public static native int floatToIntBits(float value);
016: public static native float intBitsToFloat(int bits);

As with the Integer and Long wrappers, some of the more useful Float methods convert
values between floating point and string formats. The following statements show how to
convert a float variable to a String object for display:

float value = (float)3.14159;
String s = Float.toString(value);
System.out.println(s);

The type-cast expression is necessary because Java normally represents floating point
values as type double. Also highly useful is parseFloat(). Use the method to parse a string
into a float value without requiring a Float class object. Listing 9-25, ParseFloat.java,
demonstrates.

Listing 9-25
ParseFloat.java
001: class ParseFloat {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

161

002: public static void main(String args[]) {
003: if (args.length < 1)
004: System.out.println("ex. java ParseFloat 3.14159");
005: else {
006: try {
007: float f = Float.parseFloat(args[0]);
008: System.out.println("Value == " + f);
009: } catch (NumberFormatException e) {
010: System.out.println("Error in argument " + e.getMessage());
011: }
012: }
013: }
014: }

Line 007 shows how to call parseFloat() to parse a string entered at the command line. It
is not necessary to construct a Float object; just call the method as shown in reference to
the Float class. You must catch NumberFormatException, thrown if the string contains
any illegal characters. The method recognizes standard and scientific notation. For
example, run the program as follows:

java ParseFloat 8e2
Value == 800.0

Finally in the Float class are two methods that you can use to convert floating point
values to and from their bit representations in IEEE 754 floating point format (see lines
015 and 016 in Listing 9-24, Float.txt). Applications developers probably have little use
for these, but if you need to get at the bit representation of a float value, the methods
provide the means.

The Double Wrapper Class
Listing 9-26 shows Java's Double wrapper class, which resembles Float but is probably
more useful because double is Java's default floating point data type.

Listing 9-26
Double.txt
001: // Double wrapper class constructors
002: public Double(double value);
003: public Double(String s);
004:
005: // Double wrapper class methods
006: public static String toString(double d);
007: public static Double valueOf(String s);
008: public static double parseDouble(String s);
009: static public boolean isNaN(double v);
010: static public boolean isInfinite(double v);
011: public int compareTo(Double anotherDouble);
012:
013: // Double wrapper class bit converters
014: public static native long doubleToLongBits(double value);
015: public static native long doubleToRawLongBits(double value);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

162

016: public static native double longBitsToDouble(long bits);

The Double class is nearly identical to Float, except that parameters, method return
values, and some method names are of type double. For example, you can revise the
ParseFloat.java program to use type double by replacing line 007 with

double f = Double.parseDouble(args[0]);

The rest of the program remains unchanged.

Last in the Double class are three methods for converting double values to and from their
bit representations in IEEE 754 format. The first long method, doubleToLongBits(),
converts a double value to its bit representation, with NaN equal to
0x7ff8000000000000L. The other long method converts a double value to its "raw"
representation, using whatever value NaN happens to actually be in memory. Other than
that, the two methods are equivalent. Use the double method, longBitsToDouble(), to
reconvert a long value back to floating point.

Summary
* Java's numerical classes provide object-oriented interfaces for various

mathematical operations.

* The Math class provides miscellaneous methods, and is automatically imported
into every application. You cannot instantiate the Math class. Instead, you call its
methods and use its constants in reference to the class itself.

* Objects of Java's Random class are random-number generators. Call the Random
class's methods to seed the generator. Because Java carefully defines the
algorithms used by the Random class, the resulting pseudo-random sequences are
potentially repeatable across all conforming Java installations.

* Java's numerical and Boolean wrapper classes provide object-oriented interfaces
for numeric and boolean data types. The wrapper class names are the same as the
represented native types, but are capitalized, except for Integer, which represents
int values. Java's wrapper classes are Boolean, Byte, Short, Integer, Long, Float,
and Double. (Chapter 8 describes the Character wrapper class.)

Chapter 10 Arrays
When you have multiple objects or values to store in memory, an array is often the best
choice of data structures. Java arrays are particularly easy to use, and they are more
versatile than arrays in many other programming languages. With Java, you can create
variable-size arrays at runtime instead of having to specify a size when you write the
program. Also, you can create multidimensional arrays with variable-sized elements — a
feature that makes creating complex structures such as triangular arrays easy in Java.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

163

This chapter introduces Java arrays, explains how to create and manage arrays for data
storage, and shows many related features.

In This Chapter

* Introducing Java arrays

* Creating multidimensional arrays

* Programming sparse arrays

* Catching array exceptions

* Using the Arrays utility class

* Sorting and searching arrays

Introducing Java Arrays
In Java, arrays are object-oriented, making them safe and easy to use. Array indexes are
checked, and exceptions are thrown for out-of-range boundary errors. Arrays are declared
in the program code but are created at runtime; their sizes are therefore variable and can
be determined by a program calculation. In addition, unlike in other object-oriented
languages such as C++, the initialization rules for array elements are strictly defined and
simple to understand.

Furthermore, an array is a Java type that behaves as a class object and, as such, provides
features such as an instance variable length that you can inspect to find out the number of
objects or values in an array. Unlike true classes, however, arrays cannot be extended —
there is no Array class. However, arrays operate as though there were.

Creating Arrays
An array is literally a composite type, which can be made of zero or more instances of
another type. If that type is another array, the array is multidimensional. In a Java
program, an array variable is a reference to an element of the array's type. Use empty
brackets to inform the compiler that you intend to use an identifier as a typed array. For
example, to declare an array of integers, you can use a statement such as

int intArray[]; // Declare integer array reference

This declaration states only that intArray is capable of referring to an array that contains
zero or more integer values. It does not create an array, nor does it reserve any memory
for array elements. Before using the array, a program statement must allocate memory for
the array. This is always done at runtime. For example, given the preceding declaration,
at runtime, the following statement creates an array of 10 integer values in memory:

intArray = new int[10];

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

164

After that statement executes, intArray refers to the array's first element. Each element in
the array is initialized according to the specific type's default value — in this case, all
elements are set to zero. (An array of class objects initially holds all null references.) To
refer to a specific array element, follow the array variable with square brackets containing
an index value. For example, this statement prints the contents of the preceding array:

for (int i = 0; i < 10; i++)
 System.out.println(intArray[i]);

Assign a value to a specific array element using a statement such as

intArray[4] = 123;

That assigns the value 123 to the fifth array element. Because the first index value is zero,
the index 4 references the fifth element in the array. The value assigned must be type
compatible with that of the array's declared type.

You may also declare and construct an array in one easy motion using a single statement
such as

int intArray[] = new int[10];

This actually performs two actions — declaring intArray to the compiler and, at runtime,
constructing an array of 10 integer values referred to by intArray. The array size may be
variable. For example, the following fragment declares and constructs intArray using the
value of integer n:

int n;
// ... code that sets n to some positive value
int intArray[] = new int[n];

The value of n could be calculated by program statements, or obtained from the user. If n
is zero, the array is initialized but contains no elements. If n is negative, Java throws
NegativeArraySizeException, so it is often best to create variable-size arrays using a try-
catch block.

As the preceding samples show, Java arrays are completely dynamic, and their sizes are
determined at runtime. However, after constructing the array, the program cannot change
the array's size. (See the chapters in Part III, "Collections," for array-like containers that
can be resized at runtime.) To change the size of an array, you have to create a new one
and copy to it the old array's elements. For convenience, the System class provides
method arraycopy() that you can use for this purpose. See "Copying Arrays" in this
chapter for more about this method.

Because of Java's automatic garbage collection, you can always assign a new array to an
array variable. For example, if intArray already references an array of integers, the
following statement creates a new array for this same variable:

intArray = new int[250]; // Create another array

The old array that intArray referenced is deleted, and its objects are disposed by Java's
garbage collector if and when more memory is needed. This happens automatically.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

165

Tip

One good way to ensure that array elements are disposed properly is to
declared the array variable in a method. When the method ends, the array
and its elements are automatically put out for the garbage collector.

Because arrays are constructed at runtime, it's usually best to use the length field —
available with all arrays — in loops and other statements that use array index values. For
example, this statement sets intArray's values equal to their associated indexes:

for (int i = 0; i < intArray.length; i++)
 intArray[i] = i;

The expression intArray.length equals the number of array elements, and therefore the
loop works correctly for all arrays regardless of size. The maximum index value allowed
is always one less than the value of length.

Tip

In method main(), command-line arguments are stored in the args String
array. Use the expression args.length to determine how many arguments
the user entered.

Using an array index value outside of the range 0 ... length – 1 throws an
ArrayIndexOutOfBoundsException object. To catch this error, use a try-catch block as
demonstrated in Listing 10-1, ArrayBounds.java.

Listing 10-1
ArrayBounds.java
001: class ArrayBounds {
002: public static void main(String args[]) {
003: int intArray[] = new int[10]; // Create array
004: try {
005: int q = intArray[5]; // no error
006: int p = intArray[11]; // throws exception
007: } catch (ArrayIndexOutOfBoundsException e) {
008: System.out.println("Array index out of bounds");
009: }
010: }
011: }

Running the program displays the error message at line 008 because the statement at line
006 attempts to reference an element in the array outside of its size. This error must be
caught at runtime as shown. The exception is unchecked, and therefore you are not
required to catch it. In most cases, if you receive this exception, you should rewrite the
source code to prevent the error from occurring.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

166

Tip

Keep in mind that any Java array may be empty, in which case its length
field equals zero. Accessing a zero-length array using any index value
throws ArrayIndexOutOfBoundsException.

Multiple Arrays
When declaring arrays, you may place the empty brackets either after the array data type
or after the array identifier. For example, the declaration

int intArray[];

is syntactically identical to

int[] intArray;

Both statements declare intArray as a reference to an array of integer values; neither
allocates any memory or actually constructs the array, which as I've explained, you must
do using the new operator. The alternate declaration style is convenient for declaring
multiple arrays of the same type. For example, the statement

int[] array1, array2, array3;

declares three integer arrays, which might be constructed at runtime of different sizes
using statements such as

array1 = new int[10];
array2 = new int[20];
array3 = new int[30];

The expression int[] is also useful when you need to refer to an array type, as when
declaring method parameters:

void myMethod(int[] arrayOfInt);

Java permits any array to be assigned to a variable of type Object. For example, if array1
is an array of integers, the statement

Object obj = array1;

causes obj to refer to the array. You cannot, however, use obj as an array because it is not
legal to arbitrarily apply brackets, [], to a variable of type Object. This technique, though,
might be useful for passing arrays to method Object parameters.

Note

If enough space is not available to define an array at runtime, Java throws
an OutOfMemoryError exception.

Multidimensional Arrays
A multidimensional array is merely an array of arrays. For instance, a two-dimensional
array is similar to a chessboard with rows and columns. In Java, however, the rows do not

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

167

have to be all the same lengths as they do in many other programming languages. This is
a consequence of the fact that arrays are constructed at runtime.

Declare a multidimensional array by using multiple pairs of empty brackets. The
following statement declares that trouble is a reference to a two-dimensional array of
floating point double values:

double trouble[][]

Define the array's memory at runtime using a statement such as the following, which
creates a 10-by-10 array of double values:

trouble = new double[10][10];

The two sizes can be different:

trouble = new double[10][20];

This creates an array having 10 rows of 20 double values each. Only the first size must be
specified at runtime (but it can be variable rather than literal as shown here). The
preceding statement, for instance, is equivalent to the following fragment:

trouble = new double[10][];
for (int i = 0; i < trouble.length; i++)
 trouble[i] = new double[20];

The first statement defines space for a 10-element array of double values, and it causes
trouble to refer to that space. A for loop then creates 20-element arrays, assigned to each
of trouble's elements. It's important to understand that those elements are arrays.
Specifically, the data type of the expression trouble[n] is double[], a reference to an array
of double values.

Multidimensional arrays may have more than two dimensions. The following statement
declares fifthDimension as a five-level array of double values:

double fifthDimension[][][][][];

This is of little practical value — it is rarely useful for an array to have more than three
dimensions. However, Java places no limit on the number of dimensions you can specify.

Triangular Sparse Arrays
Using multidimensional arrays makes it possible to define variable-size structures. As an
example, Listing 10-2, Triangle.java, shows how to create a triangular array, a structure
that is easy to create in Java, but not so simple in other programming languages.

Listing 10-2
Triangle.java
001: class Triangle {
002: public static void main(String args[]) {
003: // Create a triangular array
004: int triangular[][];
005: triangular = new int[8][];

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

168

006: for (int i = 0; i < triangular.length; i++)
007: triangular[i] = new int[i + 1];
008:
009: // Assign values at random to the array
010: for (int i = 0; i < triangular.length; i++)
011: for (int j = 0; j < triangular[i].length; j++)
012: triangular[i][j] = (int)(Math.random() * 100);
013:
014: // Display the array's contents
015: for (int i = 0; i < triangular.length; i++) {
016: for (int j = 0; j < triangular[i].length; j++)
017: System.out.print(" \t" + triangular[i][j]);
018: System.out.println();
019: }
020: }
021: }

Running Triangle.java displays the following output (the values are randomized and so
are probably different for you):

35
79 89
50 35 42
21 64 88 15
70 93 18 86 56
56 45 79 32 1 97
74 12 71 97 36 65 15
95 37 34 24 51 2 1 80

That looks like one of those point-to-point mileage charts on a map. It is a very efficient
structure of a category generally known as a sparse array because the unused positions
are given no memory space, as they would if this were a common multidimensional array
in which all rows are the same size.

Because of the potential for array sizes to be variable, when programming with
multidimensional arrays, it is especially important to respect the length field. The for
loops at lines 010 and 011, for example, show how to peruse a triangular array's elements:

for (int i = 0; i < triangular.length; i++)
 for (int j = 0; j < triangular[i].length; j++) ...

The expression triangular.length equals the number of variable-sized arrays — that is, the
number of rows — in triangular. The expression triangular[i].length equals the number of
elements for the row at the specified index. For extra safety, these statements probably
should be in a try-catch block, but to save room here, I omitted this detail.

Array Initializations
As I mentioned, you may assign values to array elements using expressions such as

myArray[i] = 3.14159;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

169

That assigns a floating point value to one of myArray's elements (assuming the array is a
floating point type). Another way to initialize array elements is to assign them literal
values. For example, the following statement declares and initializes an array of int
values named fibonacci:

int[] fibonacci = {1, 2, 3, 5, 8, 13, 21, 32};

The array is constructed at runtime as if you used the new operator and a for loop or other
statements to fill the array with these values. But it is often convenient to specify the
initial values using constants as shown here. This is especially so for arrays of strings,
such as

String[] text =
 {"Humpty", "Dumpty", "sat", "on", "a", "wall"};

To print out the individual strings, use a loop such as

for (int i = 0; i < text.length; i++)
 System.out.println(text[i]);

Of course, the strings may be of a more mundane nature such as the names of the months
or days of the week.

Arrays of Objects
When you have a lot of objects of the same class to create, it might be good to store them
in an array. To demonstrate, Listing 10-3, ObjectArray.java, creates an array of
StringClass objects, a class that the program declares.

Listing 10-3
ObjectArray.java
001: class StringClass {
002: private String s;
003: // Constructor
004: StringClass(String s) {
005: this.s = s;
006: }
007: void ShowString() {
008: System.out.println(s);
009: }
010: }
011:
012: class ObjectArray {
013: public static void main(String args[]) {
014: // Construct an array of class objects
015: StringClass WeekDays[] = {
016: new StringClass("Domingo"),
017: new StringClass("Lunes"),
018: new StringClass("Martes"),
019: new StringClass("Miercoles"),
020: new StringClass("Jueves"),
021: new StringClass("Viernes"),

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

170

022: new StringClass("Sabado")
023: };
024: // Call a method for each arrayed object
025: System.out.println("Weekdays in Spanish");
026: for (int i = 0; i < WeekDays.length; i++)
027: WeekDays[i].ShowString();
028: }
029: }

Running the program displays the names of the weekdays in Spanish. The program's
StringClass (see lines 001-010) is just for demonstration purposes — you could more
easily create an array of String objects. The demonstration class simply saves a string
passed to its constructor and provides a method, ShowString(), that displays the saved
string value.

Tip

Line 005 in Listing 10-3 shows a neat trick for avoiding a name conflict
when a constructor's parameter is named the same as a class instance
variable. In this statement, the expression this.s refers to the instance
variable. The other reference to s refers to the constructor's parameter.

The main program creates an array of StringClass objects using the statement at lines
015-023. Notice that this is a single statement that performs several operations:

* It declares WeekDays as an array of StringClass objects.

* It constructs at runtime an array containing seven objects.

* It initializes each object by calling the StringClass constructor.

This isn't the only way to create an array of class objects. Alternatively, instead of
specifying each object in the source code as in the demonstration program, you could
declare and initialize the array using statements such as

StringClass WeekDays[] = new StringClass[7];
WeekDays[0] = new StringClass("Domingo");
...
WeekDays[6] = new StringClass("Sabado");

Pay close attention to the multiple uses of new. The first use creates the array, which is
initialized to hold all null references at this point. In the other statements, new initializes
each individual object in the array (I deleted five of them to save space).

Copying Arrays
Java provides three ways to copy an array, but it's important to understand that the results
are not identical. Listing 10-4, ArrayCopy.java, and its submodule Listing 10-5,
TestClass.java, demonstrate the three techniques.

Listing 10-4

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

171

ArrayCopy.java
001: import TestClass; // Import submodule
002:
003: class ArrayCopy {
004: // Declare the two arrays
005: public static int[] apples, oranges;
006:
007: // Array copy method #1
008: public static void CopyMethod1() {
009: System.out.println("\nArray copy method #1");
010: oranges = apples;
011: // oranges[0]++; // Enable to change test
012: TestClass.CompareArrays(apples, oranges);
013: }
014:
015: // Array copy method #2
016: public static void CopyMethod2() {
017: System.out.println("\nArray copy method #2");
018: oranges = new int[apples.length];
019: System.arraycopy(apples, 0, oranges, 0, apples.length);
020: // oranges[0]++; // Enable to change test
021: TestClass.CompareArrays(apples, oranges);
022: }
023:
024: // Array copy method #3
025: public static void CopyMethod3() {
026: System.out.println("\nArray copy method #3");
027: oranges = (int[])apples.clone();
028: // oranges[0]++; // Enable to change test
029: TestClass.CompareArrays(apples, oranges);
030: }
031:
032: public static void main(String args[]) {
033: // Construct and initialize the first array
034: apples = new int[8];
035: for (int i = 0; i < apples.length; i++)
036: apples[i] = (int)(Math.random() * 100);
037: // Copy three ways and test each copy
038: CopyMethod1();
039: CopyMethod2();
040: CopyMethod3();
041: }
042: }

Note

Despite the fact that this sample program is in two parts, and is larger than
normal for the listings in this book, you still compile it using the single
command, javac ArrayCopy.java . Run the resulting .class file by typing
java ArrayCopy. You don't have to compile the submodule separately,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

172

although you may do so by typing javac TestClass.java. You can't run the
submodule separately.

Listing 10-5
TestClass.java
001: class TestClass {
002: public static void CompareArrays(int apples[], int oranges[])
003: {
004: // Display the array values
005: int i;
006: System.out.print("apples : ");
007: for (i = 0; i < apples.length; i++)
008: System.out.print(apples[i] + " \t");
009: System.out.print("\noranges: ");
010: for (i = 0; i < oranges.length; i++)
011: System.out.print(oranges[i] + " \t");
012: System.out.println(); // Start new line
013:
014: // Test if the array references are the same
015: if (apples == oranges)
016: System.out.println("Array references are identical");
017: else
018: System.out.println("Array references are NOT identical");
019:
020: // Test if the array contents are the same
021: boolean identical = true;
022: for (i = 0; i < apples.length; i++)
023: if (apples[i] != oranges[i])
024: identical = false;
025: if (identical)
026: System.out.println("Array contents are the same");
027: else
028: System.out.println("Array contents are NOT the same");
029: }
030: }

When you run the program, it displays two arrays of integers, named apples and oranges,
initialized to values selected at random. Each test looks like this (I show only the first of
three reports here):

Array copy method #1
apples : 45 13 59 19 75 42 24 45
oranges: 45 13 59 19 75 42 24 45
Array references are identical
Array contents are the same

The copy method number is shown first, followed by the values in each array. Two final
comments indicate whether the array references and the contents of both arrays are the
same.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

173

The first way to copy an array is the simplest — merely assign one array reference to
another of the same type. For example, in Listing 10-4, line 010 assigns apples to oranges:

oranges = apples;

However, that does not create a copy of the array's contents. It merely causes the two
variables to refer to the same array in memory. To prove this, and to better understand the
consequences of the preceding statement, enable line 011 in Listing 10-4,
ArrayCopy.java, which is commented out

oranges[0]++; // Enable to change test

The statement alters one of the array's values after copying. But, when you compile and
run the program, it reports that the first test's array references and contents are still
identical. This is because, if you simply assign one array to another, any changes to the
array's contents using either reference makes that change to the same value in memory.

The other two tests show how to copy an array's contents so that the array references are
to different arrays in memory. The first of these techniques, demonstrated by
CopyMethod2() at lines 015-022 in Listing 10-4, ArrayCopy.java, calls a System class
method, arraycopy(), specifically provided to make copying arrays quick and easy. To
use this technique, you must construct the destination array using new (see line 018):

oranges = new int[apples.length];

After that, call arraycopy() as follows to copy the source array's contents to the
destination's:

System.arraycopy(apples, 0, oranges, 0, apples.length);

The two integer values indicate the starting index to use for each preceding array in the
parameter list. Use zero to copy starting with the first element. The final value is the
number of items to copy. To copy the entire array, use the length variable as shown for
the source (the first) array.

Try the same test this time by enabling the increment statement in CopyMethod2() at line
020 in Listing 10-4, ArrayCopy.java. Now, when you run the program, it reports that the
array references and contents are not the same:

Array copy method #2
apples : 38 82 91 63 28 43 13 50
oranges: 39 82 91 63 28 43 13 50
Array references are NOT identical
Array contents are NOT the same

Notice that the first value in each array differs as a result of the increment statement.
Because the array references, apples and oranges, are different, a change to one array
element does not affect the others.

The sample program demonstrates a third technique for copying an array that uses the
clone() method, inherited from Object (see Listing 10-4, ArrayCopy.java, lines 024-030).
Because Object.clone() returns type Object, you must use a type-cast expression as
follows in order to compile the assignment statement:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

174

oranges = (int[])apples.clone();

This method differs from the one that calls arraycopy() in that you do not have to
construct the destination array. To test this copy technique, enable the increment
statement at line 028 as you did twice before. Now, the report for the third copying
method indicates that, after cloning, the array references and contents are not the same.

Note

Object.clone() throws CloneNotSupported by default, but because of the
way arrays implement the Clonable interface, it is not necessary to catch
this exception. This wasn't so in earlier Java versions, but is no longer a
concern because the array clone() method guarantees that it does not
throw this exception. In fact, if you try to catch CloneNotSupported, the
compiler reports an error. See Chapter 12, "Interfaces," for more about
interfaces.

More About System.arraycopy()
As just explained, the System class provides method arraycopy() primarily for copying
one array to another. However, this method is also valuable for moving values around
within the same array — for example, in buffers of characters or bytes. The System class
declares arraycopy() as follows:

public static void
 arraycopy(Object src, int src_position,
 Object dst, int dst_position,
 int length);

The method's parameters are

* Object src — Pass the name of the source array from which you want to copy
array elements.

* int src_position — Pass the starting index value of the first source-array element
to copy.

* Object dst — Pass the name of the destination array to which you want to copy
array elements.

* int dst_position — Pass the starting index value of the first destination-array
element to which you want to assign copied values.

* int length — Pass the number of array elements to copy.

Using arraycopy() on the same array — in other words, specifying the same array as the
source and destination — moves the elements in the array up or down. This is a useful
technique for shuffling data in buffers. For example, these statements define and initialize
a 10-element array of integers, named buffer:

int buffer[] = new int[10];

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

175

for (int i = 0; i < buffer.length; i++)
 buffer[i] = i;

The code sets the element values in buffer to

0 1 2 3 4 5 6 7 8 9

To shuffle the values in buffer, specify the same array as the source and destination
arguments using a statement such as

System.arraycopy(buffer, 3, buffer, 0, 7);

This moves seven values starting with the fourth element to the beginning (zero -index) of
the array. After the preceding statement executes, the resulting buffer holds these values:

3 4 5 6 7 8 9 7 8 9

Notice that values beyond those moved are unchanged.

Array Exceptions
When using arrays, you may experience one of the following exceptions. These are
extended from the RuntimeException class, and are therefore unchecked. You may catch
these using try-catch blocks, but since they are considered to be unchecked errors, they
are best handled by modifying the source code so the error never occurs. For example, as
mentioned, instead of catching ArrayIndexOutOfBoundsException, it is considered to be
better programming to ensure that this condition never occurs in the first place. The array
exception classes are

* NegativeArraySizeException — Thrown if a statement attempts to construct an
array with a negative size value. However, it is not an error to create a zero-size
array.

* IndexOutOfBoundsException — This exception is the basis for two others,
ArrayIndexOutOfBounds and StringIndexOutOfBounds. Java probably never
throws a general IndexOutOfBounds object.

* ArrayIndexOutOfBoundsException: Thrown if a statement attempts to access an
array element using an index value that is less than zero or greater than or equal to
the array's length field. If you receive this exception, the fault is in the program's
logic.

* ArrayStoreException: Thrown if a statement attempts to store the wrong type of
object in an array element, using a statement (a type-cast expression, for example)
that the compiler cannot catch and report as an error.

The Arrays Utility Class
Java provides a handy utility class, Arrays, with methods for sorting, searching, equality
testing, and filling arrays of many types. The sorting methods are extensively optimized

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

176

for top performance given most data sets. The following sections list and discuss each
category of Arrays methods.

Sorting Arrays
Listing 10-6, ArraysSort.txt, shows the public sorting methods in the Arrays class. Each
method is named sort(), but takes different data types. You can use these methods to sort
arrays of long, int, short, char, byte, double, and float values. You can also use them to
sort arrays of any class objects that can be compared.

Listing 10-6
ArraysSort.txt
001: // Arrays class sorting methods
002: public static void sort(long[] a);
003: public static void sort(long[] a, int fromIndex, int toIndex);
004: public static void sort(int[] a);
005: public static void sort(int[] a, int fromIndex, int toIndex);
006: public static void sort(short[] a);
007: public static void sort(short[] a, int fromIndex, int toIndex);
008: public static void sort(char[] a);
009: public static void sort(char[] a, int fromIndex, int toIndex);
010: public static void sort(byte[] a);
011: public static void sort(byte[] a, int fromIndex, int toIndex);
012: public static void sort(double[] a);
013: public static void sort(double[] a,
 int fromIndex, int toIndex);
014: public static void sort(float[] a);
015: public static void sort(float[] a, int fromIndex, int toIndex);
016: public static void sort(Object[] a);
017: public static void sort(Object[] a,
 int fromIndex, int toIndex);
018: public static void sort(Object[] a, Comparator c);
019: public static void sort(Object[] a,
 int fromIndex, int toIndex, Comparator c);

Note

Listing 10-6 is for reference only and cannot be compiled and run.
Unnumbered lines are those that are too long for this page — on screen,
you see the unbroken lines. These notes apply for other listings in this
section that end with the filename extension .txt.

Each overloaded sort() method has two forms. The first sorts an entire array. The second
sorts a portion of an array using frontIndex and toIndex integer parameters. To sort arrays
of simple types such as double, first import the Arrays class with this declaration at the
top of the source code file:

import java.util.Arrays;

Then, construct the array and sort it with code such as

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

177

double doubleArray[] = new double[128};
// statements that fill the array
Arrays.sort(doubleArray);

The last line sorts the array in ascending order. To sort only a portion of the array, specify
starting and ending index values as follows:

Arrays.sort(doubleArray, 10, 20);

That statement throws IllegalArgumentException if the indexes are reversed. It can also
throw ArrayIndexOutOfBounds if either index is out of range. Don't catch these
exceptions — they should be considered programming errors that should be prevented
from occurring.

Use similar programming to sort arrays of other types. Sorting class objects, however,
takes a little more effort. To demonstrate, Listing 10-7, SortStrings.java, shows how to
use the Arrays class to sort an array of String objects.

Listing 10-7
SortStrings.java
001: import java.util.Arrays;
002:
003: class SortStrings {
004: // Display an array of Strings
005: public static void ShowStrings(String[] a, String msg) {
006: System.out.println(msg);
007: for (int i = 0; i < a.length; i++)
008: System.out.println(a[i]);
009: }
010: // Create, sort, and display an array of StringClass objects
011: public static void main(String args[]) {
012: String colors[] = {
013: "rojo", "azul", "verde", "negro", "blanco", "cafe", "gris"
014: };
015: ShowStrings(colors, "\nBefore sorting");
016: Arrays.sort(colors);
017: ShowStrings(colors, "\nAfter sorting");
018: }
019: }

The program creates an array of String objects at lines 012-014, initialized to some color
names in Spanish. Line 016 sorts the array. The programming is straightforward because
String objects can be compared directly.

However, the same may or may not be true for other class objects. In most cases, the
class must implement the Comparable interface (Chapter 12 goes into interfaces in more
detail). If the class does not implement Comparable, the sort() method throws
ClassCastException. As with other sort() exceptions, this indicates a programming logic
error that should be fixed in the source code.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

178

Note

It is possible, although unlikely, for Arrays.sort() to throw a
ClassCastException if the array to be sorted somehow contains objects
that cannot be compared — an array of Object references, for example, to
a collection of objects of different classes.

Listing 10-8, SortObjects.java, shows how to create a class that implements Comparable.
Because of this, the Arrays.sort() method can sort an array of class objects.

Listing 10-8
SortObjects.java
001: import java.util.Arrays;
002:
003: class StringClass implements Comparable {
004: private String s;
005: StringClass(String s) {
006: this.s = s;
007: }
008: void ShowString() {
009: System.out.println(s);
010: }
011: public int compareTo(Object other) {
012: StringClass sc = (StringClass)other;
013: return s.compareTo(sc.s);
014: }
015: }
016:
017: class SortObjects {
018:
019: // Display an array of StringClass objects
020: public static void ShowStrings(StringClass[] a, String msg) {
021: System.out.println(msg);
022: for (int i = 0; i < a.length; i++)
023: a[i].ShowString();
024: }
025:
026: // Create, sort, and display an array of StringClass objects
027: public static void main(String args[]) {
028: StringClass colors[] = {
029: new StringClass("rojo"),
030: new StringClass("azul"),
031: new StringClass("verde"),
032: new StringClass("negro"),
033: new StringClass("blanco"),
034: new StringClass("cafe"),
035: new StringClass("gris")
036: };
037: ShowStrings(colors, "\nBefore sorting");
038: Arrays.sort(colors);
039: ShowStrings(colors, "\nAfter sorting");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

179

040: }
041: }

As you can see, the program is more complex than the one that merely sorts String
objects. Here, the StringClass at lines 003-015 provides a method for comparing objects
of this class. You saw another version of StringClass in Listing 10-3, SortObjects.java.
This newer version of the class states that it implements Comparable (see line 003). This
requires the class to provide a compareTo() method declared as

public int compareTo(Object other) {
...
}

The method is called in reference to an object of the class. The other object is the one to
be compared. Because all classes extend Object, compareTo() can compare objects of any
classes. In this case, we want to compare two StringClass objects as shown here at lines
012 and 013:

StringClass sc = (StringClass)other;
return s.compareTo(sc.s);

The first statement is optional. It assigns the other parameter to a local StringClass
variable, sc. This requires a type-cast expression that tells the compiler that we know that
other is really a StringClass object, so the assignment is safe. Remember that assignments
such as this merely copy the object's reference. The object isn't cloned or copied in
memory in any way. If other is not a StringClass object, or of an extended class, this
statement throws ClassCastException.

The second statement simply passes the String class's compareTo() result as our method's
return value. In other cases, you might have to write statements that do whatever is
necessary to compare two objects. In any case, the result should be –1 if this object is less
than other, 0 if they are equal, and +1 if this object is greater than other.

Sorting with Comparator Objects
Two other Arrays class sorting methods accept an object of type Comparator (refer back
to Listing 10-6, ArraysSort.txt, lines 018-019). You can use these sort() methods in cases
when it is inconvenient or impossible to create a class that implements Comparable. As
an example, Listing 10-9 uses a Comparator object to sort an array of strings.

Listing 10-9
SortComparator.java
001: import java.util.Arrays;
002: import java.util.Comparator;
003:
004: // Class that implements the Comparator interface
005: class StringCompare implements Comparator {
006: public int compare(Object o1, Object o2) {
007: String s1 = (String)o1;
008: String s2 = (String)o2;
009: return s1.compareTo(s2);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

180

010: }
011: }
012:
013: class SortComparator {
014: // Display an array of Strings
015: public static void ShowStrings(String[] a, String msg) {
016: System.out.println(msg);
017: for (int i = 0; i < a.length; i++)
018: System.out.println(a[i]);
019: }
020: // Create, sort, and display an array of StringClass objects
021: public static void main(String args[]) {
022: String colors[] = {
023: "rojo", "azul", "verde", "negro", "blanco", "cafe", "gris"
024: };
025: ShowStrings(colors, "\nBefore sorting");
026: // Construct the Comparator object
027: StringCompare CompareObject = new StringCompare();
028: // Sort the array using the Comparator object
029: Arrays.sort(colors, CompareObject);
030: ShowStrings(colors, "\nAfter sorting");
031: }
032: }

Some of this program resembles others in the preceding section. What's different is the
StringCompare class declared at line 005. This class implements Comparator, an
interface in java.util. Line 002 imports the interface so we can implement its method.
This method, compare(), receives two Object references (see line 006). In this case, we
know the objects are strings, but if not, the statements at lines 007-008 might throw
ClassCastException. Line 009 returns the result of the String class compareTo() method.
In your own classes, you can do whatever is necessary to compare the two objects.

What's important in this program is the separation of the comparison method from the
class of objects to be compared. The Comparator class doesn't contain the data to be
compared, and therefore, this technique is useful for sorting arrays of class objects when,
for example, the class cannot be extended to implement Comparable as in the preceding
section.

Line 027 constructs the Comparator object. Line 029 passes the array of strings and the
Comparator object to Arrays.sort(). As with other sorting methods, you can sort a portion
of the array by passing two additional integer index values. This can throw an exception
if the values are reversed or out of bounds.

Searching Arrays
The Arrays class provides several overloaded methods named binarySearch() that you
can use to search arrays of long, int, short, char, byte, double, and float values. Listing
10-10, ArraysSearch.txt, shows these Arrays class methods.

Listing 10-10

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

181

ArraysSearch.txt
001: // Arrays class searching methods
002: public static int binarySearch(long[] a, long key);
003: public static int binarySearch(int[] a, int key);
004: public static int binarySearch(short[] a, short key);
005: public static int binarySearch(char[] a, char key);
006: public static int binarySearch(byte[] a, byte key);
007: public static int binarySearch(double[] a, double key);
008: public static int binarySearch(float[] a, float key);
009: public static int binarySearch(Object[] a, Object key);
010: public static int binarySearch(Object[] a,
 Object key, Comparator c);

When calling binarySearch(), it is your responsibility to ensure that the array is sorted in
ascending order. If not, no exception is thrown, but the results of the search are not
defined. The method is easy to use. Create an array:

int intArray[] = new int[100];

And then, sort it and pass it to binarySearch() using statements such as

Arrays.sort(intArray);
int k = Arrays.binarySearch(intArray, 50);
if (k >= 0)
 // .. use intArray[k]

Pass the array and value to find as arguments to binarySearch(). The method returns the
index in the array at which the key value is located. If the method returns a negative value,
the key is not in the array. This value is not necessarily –1, but might be any negative
value. If there are duplicate values in the array, there is no way to predetermine which
one will be found.

Lines 009-010 in Listing 10-10 show two overloaded binarySearch() methods that can
search arrays of any types of objects. Use these methods in ways similar to that described
in the preceding two sections. The objects must be of classes that implement the
Comparable interface or, failing that, for which you can construct an object of a class that
implements Comparator.

Tip

Don't forget to sort your arrays before passing them to
Arrays.binarySearch()!

Comparing Arrays
Use one of the overloaded equals() methods shown in Listing 10-11, ArraysEqual.txt, to
compare two arrays for equality. There are methods available for all built in types, and
one that can compare arrays of class objects.

Listing 10-11
ArraysEqual.txt

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

182

001: // Arrays class equality testing methods
002: public static boolean equals(long[] a, long[] a2);
003: public static boolean equals(int[] a, int[] a2);
004: public static boolean equals(short[] a, short a2[]);
005: public static boolean equals(char[] a, char[] a2);
006: public static boolean equals(byte[] a, byte[] a2);
007: public static boolean equals(boolean[] a, boolean[] a2);
008: public static boolean equals(double[] a, double[] a2);
009: public static boolean equals(float[] a, float[] a2);
010: public static boolean equals(Object[] a, Object[] a2);

Using an Arrays class equals() method is mostly straightforward. For most types, you can
simply pass two arrays to the method using code such as

double a1[] = new double[32];
double a2[] = new double[32];
...
if Arrays.equals(a1, a2)
// ... code to execute if arrays are equal

The two arrays are considered to be equal if they meet one of the following conditions:

* They contain the same number of equivalent elements in the same order.

* They each refer to the same array of objects in memory.

* They are both null references.

When the two arrays contain class objects, they must be comparable using the equals()
method inherited from Object. In other words, the arrayed objects are tested for
equivalence — not merely whether the object references are to the same objects. Unlike
the sorting methods in the Arrays class, the classes of arrayed objects do not have to
implement Comparable. Also there is no Arrays.equals() method that uses a Comparator
object to perform the comparison. These differences are because the arrayed objects are
merely compared for equality, not for whether one is greater or lesser than the other.

Filling Arrays
When you create a new array, Java fills it with zero bytes. (If the array contains object
references, this means they are all set to null initially.) To fill arrays with other values,
call one of the fill() methods in the Arrays class, shown here in Listing 10-12,
ArraysFill.txt. There are overloaded fill() methods for each native data type, as well as
for objects of any class.

Listing 10-12
ArraysFill.txt
001: // Arrays class filling methods
002: public static void fill(long[] a, long val);
003: public static void fill(long[] a,
 int fromIndex, int toIndex, long val);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

183

004: public static void fill(int[] a, int val);
005: public static void fill(int[] a,
 int fromIndex, int toIndex, int val);
006: public static void fill(short[] a, short val);
007: public static void fill(short[] a,
 int fromIndex, int toIndex, short val);
008: public static void fill(char[] a, char val);
009: public static void fill(char[] a,
 int fromIndex, int toIndex, char val);
010: public static void fill(byte[] a, byte val);
011: public static void fill(byte[] a,
 int fromIndex, int toIndex, byte val);
012: public static void fill(boolean[] a, boolean val);
013: public static void fill(boolean[] a,
 int fromIndex, int toIndex, boolean val);
014: public static void fill(double[] a, double val);
015: public static void fill(double[] a,
 int fromIndex, int toIndex,double val);
016: public static void fill(float[] a, float val);
017: public static void fill(float[] a,
 int fromIndex, int toIndex, float val);
018: public static void fill(Object[] a, Object val);
019: public static void fill(Object[] a,
 int fromIndex, int toIndex, Object val);

Each fill() method has two forms. The simpler one fills an entire array. Use it like this:

double fpArray[] = new double[64];
Arrays.fill(fpArray, 3.14159);

To fill only a portion of an array, supply starting and ending index values. For example,
the preceding statement is actually implemented as

Arrays.fill(fpArray, 0, fpArray.length, 3.14159);

Notice that, despite the second index's name, toIndex, the last arrayed element to be filled
is at fpArray[toIndex – 1]. This may be confusing, and good testing is called for when
using the Arrays.fill() method to fill portions of arrays. As with other Arrays class
methods that accept index parameters, an IllegalArgumentException is thrown if the
index values are reversed. ArrayIndexOutOfBoundsException is thrown if either or both
indexes are out of bounds for the array.

The last two fill() methods fill an array of objects of any class (see lines 018-019). This
does not clone the objects nor copy them in any way. The methods simply equate val to
each array element — in other words, following the fill, all array elements refer to the
same object in memory. If that's not what you want, you must write your own fill method
to clone the objects individually.

Arrays as Lists
Finally in the Arrays class is a miscellaneous method, asList(), that returns any array of
objects as a List object. The method is useful when you have existing code that uses a

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

184

List object, but your data is stored in an array. Listing 10-13, ArraysList.txt, shows the
asList() method declaration. The remaining indented six lines show the List methods that
are implemented for the array-as-list.

Listing 10-13
ArraysList.txt
001: // Arrays class List methods
002: public static List asList(Object[] a);
003: public int size();
004: public Object[] toArray();
005: public Object get(int index);
006: public Object set(int index, Object element);
007: public int indexOf(Object o);
008: public boolean contains(Object o);

No object conversions occur by calling asList(). Nothing is moved nor rearranged in
memory. But after calling the method, you can use the returned value as a List object.
Most important, any change to a List element affects the same element in the original
array.

Note

Chapter 14, "Introducing Collections," discusses List objects and other
collection classes.

A simple example program demonstrates how to use an array as a List object. Listing 10-
14, ArraysList.java, creates a small String array, converts it to a List, and then calls
several of the methods from Listing 10-13 for the array-as-list.

Listing 10-14
ArraysList.java
001: import java.util.Arrays;
002: import java.util.List;
003:
004: class ArraysList {
005: public static void main(String args[]) {
006: // Create array of strings
007: String fruits[] = {
008: "apple", "banana", "cherry", "pear"
009: };
010: // Convert array to a List object
011: List fruitList = Arrays.asList(fruits);
012: // Call various List methods for the array
013: int size = fruitList.size();
014: System.out.println("List size = " + size);
015: String s = (String)fruitList.get(2);
016: System.out.println("List element #2 = " + s);
017: if (fruitList.contains("banana"))
018: System.out.println("fruitList contains banana");
019: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

185

020: }

Lines 001-002 import the Arrays and List classes, both members of the java.util package.
(See Chapter 13 for more about packages.) Lines 007-008 create the String array fruits,
initialized to a few tasty objects. Line 011 shows how to convert the array to a List object
by calling Arrays.asList().

After calling that method, several statements near the end of the program call various List
methods. For example, line 015 calls List.get() to obtain the element at index #2. This is
the third string object in the list. Because get() returns Object, a type-cast expression is
needed in this statement. Running the program displays:

List size = 4
List element #2 = cherry
fruitList contains banana

Summary
* An array is a composite data structure. As in most programming languages, Java

arrays consist of data elements stored one after the other in memory.

* Declaring an array merely creates a variable that can refer to an array. Java arrays
are allocated memory at runtime using the new operator. As a consequence, and a
decided advantage, array sizes can be computed by program statements. Once an
array is defined (allocated memory), however, its size cannot be changed.

* A multidimensional array is simply an array of arrays. There is no limit on the
number of dimensions you may declare; however it is rarely useful to declare
more than three levels. Unlike in most computer languages, nested arrays in Java
multidimensional arrays do not have to all be of the same size.

* Arrays support exceptions. For example, indexing an array outside of its defined
boundaries throws ArrayIndexOutOfBounds. These and other unchecked array
exceptions are considered to be programming errors that are best fixed in the
source code so that the errors never occur in the first place.

* You can copy an array three ways. However, simply assigning an array variable
to another of the same type causes both variables to refer to the same arrayed
objects in memory. To make a fresh copy of an array, use either the
System.arraycopy() method, or call the clone() method inherited by all arrays
from Object.

* The Arrays utility class in the java.util package provides many useful array
methods, including methods for sorting, searching, equality testing, and filling
arrays. There is also a method that converts an array of objects into a List object.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

186

Chapter 11 Abstract Classes
If a class is a building, then an abstract class is a blueprint that explains how the building
should be constructed. You might call the blueprint an abstraction of the building that the
construction crew uses to construct the real structure. In Java, abstract classes specify
what extended classes should do — this is called the class's contract because it
guarantees to users that the class performs as expected. A class's contract is similar to the
agreement that the construction company probably has with the building's owners that,
after the job is done, the elevators should go up and down when summoned, and the hot
water should come out of the expected faucets.

In this chapter, you learn about abstract classes and how to use them to create class
hierarchies. First, however, you need to learn how access rules affect the rights of access
that users have to a class's members. Understanding access rules is fundamental to
creating usable class abstractions and hierarchies, so let's begin there.

In This Chapter

* Declaring class access rules

* Encapsulating and hiding data

* Understanding private, protected, and public declarations

* Creating abstract classes

* Extending abstract classes

Class Access Rules
Java provides three access rules that define the rights of access to a member of a class,
including data and methods, whether static or non-static. The three access rules are

* public — Users who have access to the class have access to all members declared
public.

* protected — Only the class's own methods, and those in any classes extended
from this one, have access to protected members.

* private — Only the class's own members have access to a private member. Even
an extended class cannot access a private member of a superclass.

Those definitions have a few quirks when viewed in the light of packages, explained in
more detail in Chapter 13, "Packages." Some similar differences exist concerning
interfaces, the topic for Chapter 12, "Interfaces." But for the purposes of understanding

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

187

abstract classes, and in most programming situations, it's best to consider these three rules
inviolate. I explain the quirks as appropriate throughout this and the other chapters.

Data Hiding
By using class access rules, you can provide safe and secure access to data members in
class objects. This is often called data hiding or encapsulation because the data in the
form of instance variables is made accessible only through calling one or more class
methods. The benefits of this simple but essential object-oriented technique cannot be
praised highly enough. With data hiding, you control access to data, and in that way, you
ensure its proper use. In addition, you simplify the future modification of your programs.

A simple example demonstrates these benefits. Listing 11-1, DataHiding.java, uses the
technique to create a class, TDate, for representing a date.

Listing 11-1
DataHiding.java
001: class TDate {
002: private int month, day, year;
003: public TDate(int month, int day, int year) {
004: setDate(month, day, year);
005: }
006: public void setDate(int month, int day, int year) {
007: this.month = month;
008: this.day = day;
009: this.year = year;
010: }
011: public String getDate() {
012: return month + "/" + day + "/" + year;
013: }
014: }
015:
016: class DataHiding {
017: public static void main(String args[]) {
018: TDate birthday = new TDate(8, 15, 1975);
019: String s = birthday.getDate();
020: System.out.println("birthday = " + s);
021: }
022: }

Class TDate declares three private int variables, month, day, and year, at line 002.
Because the instance variables are private, only the class's own methods may directly
refer to them. The three variables are hidden inside the class, and the only way to get to
them is by calling a class method.

For example, line 018 constructs a TDate object named birthday. The next statement calls
the class's public getDate() method, which returns a string constructed from the month,
day, and year private instance variables (see lines 011-014). The getDate() method may

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

188

access the class's private data, but the main program may not. For example, if you insert
the following statement between lines 018 and 019, the program no longer compiles:

birthday.year = 1990; // ???

Attempting to compile the program now produces the error message:

X.java:19: year has private access in TDate
 birthday.year = 1990;

To change the date, the program is forced to call a public method such as setDate(), using
code such as

birthday.setDate(8, 15, 1990);

A real program would need other methods to get and set each component of a date, but
the concept is clear. Data hiding prevents the indiscriminate use of class data. In addition,
because only the class's own methods can access private data variables, it's possible to
change their types without affecting users of the class. We could, for example, decide to
store the month and day variables using type byte, and perhaps save a little memory.
Users of the class are unaffected by the change because the class's contract has been
maintained.

Protected Members
Making every instance variable private may be too extreme a measure in many cases.
Hiding data is a useful technique, but you may not want to limit access to data for all
class users. For example, you often want an extended class to have direct access to
instance variables instead of forcing the subclass to call methods in the superclass.
Outside users of either class are still restricted from indiscriminately accessing the data
directly.

This is what the protected access specifier does. By making a member protected (it can be
an instance variable or a method), you state that the class's own methods, and any
methods in extended classes, may directly access the member. Outside users (classes not
extended from this one) must still call public methods to access the data. Listing 11-2,
ProtectedData.java, demonstrates the basic technique of using protected data members.

Listing 11-2
ProtectedData.java
001: class TDate {
002: protected int month, day, year;
003: public TDate(int month, int day, int year) {
004: setDate(month, day, year);
005: }
006: public void setDate(int month, int day, int year) {
007: this.month = month;
008: this.day = day;
009: this.year = year;
010: }
011: public String getDate() {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

189

012: return month + "/" + day + "/" + year;
013: }
014: }
015:
016: class TDateTime extends TDate {
017: protected int hour, min;
018: public TDateTime(int month, int day, int year,
019: int hour, int min) {
020: super(month, day, year); // Call superclass constructor
021: this.hour = hour;
022: this.min = min;
023: }
024: public String getDate() { // Override method
025: return month + "/" + day + "/" + year +
026: " : " + hour + ":" + min;
027: }
028: }
029:
030: class ProtectedData {
031: public static void main(String args[]) {
032: TDate now = new TDateTime(3, 15, 2001, 14, 45);
033: String s = now.getDate();
034: System.out.println("now = " + s);
035: }
036: }

The TDate class in the new program is the same as before, but its three instance variables
are now declared protected instead of private (see line 002). An extended class,
TDateTime (lines 016-028), adds hour and min variables to those inherited from TDate.
The constructor initializes an object of the extended class by first calling the superclass
constructor at line 020, and then assigning values to hour and min. This is a typical
design; constructors in extended classes almost always call the superclass constructor to
initialize inherited data members.

The new class also declares a getDate() method. Because this is the same name as the
method in TDate, the new method is said to override the inherited one. Because the
month, day, and year instance variables are protected, the extended class has direct access
to them, as shown at lines 025-026, which build a string for the object's date and time
information. Running the program displays

now = 3/15/2001 : 14:45

Abstractions
Abstract classes are especially useful in creating libraries to be shared by many
programmers. They are also a great way to lock down a class's contract by providing a
blueprint of the class's design. Abstract classes declare one or more abstract methods that
provide the form of a method, but not its statements. A pure abstract class declares only
abstract methods; however, an abstract class may also declare non-abstract, completely
implemented methods. An abstract class may also declare instance variables, but no

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

190

abstract class may be used to construct an object. To do that, another class must extend
the abstract class and provide programming for all abstract methods. The purpose of an
abstract class is to provide the design of extended classes, which may be implemented
differently based on the programmer's needs.

Why Use Abstract Classes?
To understand how to create and use abstract classes, it is helpful to examine a series of
classes that, although hypothetical in nature, demonstrate good object-oriented
programming techniques. Consider this problem — you need to create primitive graphics
objects that other code will combine to produce shapes on screen.

Right away, you can see that an abstraction of a graphics class helps simplify creating the
real classes. The abstraction might specify shared characteristics such as color and
location. It also stipulates the class's contract — for instance, you can reasonably assume
that calling a method named draw() causes a shape to appear.

Note

Java does not enforce a class's contract — that's your job. If you program
the draw() method to save data in a file instead of displaying a shape, you
may be violating the class's contract, but Java won't care. However, just
because a method is named draw() doesn't guarantee its purpose. In a
game based in the Wild Wild West, draw() might have an entirely different
meaning! Good documentation is the answer. Be sure to write down
exactly what your class methods are supposed to do.

Creating an Abstract Class
To create an abstract class, simply preface the class declaration with the word abstract. A
typical example is a class that represents a graphical shape — obviously this is an
abstraction of what a real shape might be:

abstract class Shape {
...
}

Inside the class you may insert instance variables, constructors, and methods, just as you
can for any other class. For example, Shape might have location and color information
along with other items that all shapes share, but I'll leave these elements out to keep the
sample code as simple as possible. The abstract class normally has at least one abstract
method declared as follo ws:

abstract class Shape {
 abstract void draw();
}

The abstract method has no body, only a declaration. In this case, the program so far
states that Shape is a class that can perform a method named draw(). This is a pure

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

191

abstraction. We have not created any real shapes. All we have done is specify that a
Shape is a kind of object that knows how to draw itself.

Tip

When all declarations in an abstract class are abstract, it might be better
to use an interface as described in Chapter 12. However, it is not an error
to create pure abstract classes as shown here.

Extending an Abstract Class
It is not possible to construct an object of an abstract class. If you try, the compiler
reports the error "Shape is abstract; cannot be instantiated." To use the abstract class,
another class extends it and provides the actual programming for any and all abstract
methods:

class Circle extends Shape {
 void draw() {
 // statements that draw a circle
 }
}

Circle extends the Shape abstract class, and implements the abstract draw() method. A
real program might have many such extended classes — for example, Rectangle and
Polygon classes that also extend Shape, and that provide their own unique
implementations of the draw() method.

The importance of our illustrative class hierarchy may not yet be clear. But consider
some code that refers to Shape objects in general. For example, you can create an array of
Shape like this:

Shape shapeArray[] = new Shape[100];

It's okay to create an array using the abstract Shape class, even though Shape objects
cannot be constructed, because the array contains only references to objects, all of which
are initially set to null. Except for the array itself, no actual objects have yet been
constructed. That might happen in other code such as

shapeArray[0] = new Circle();
shapeArray[1] = new Rectangle();
shapeArray[2] = new Polygon();

A Circle is a Shape, so is a Rectangle and a Polygon, so it's okay for the Shape references
in the array to refer to real objects of classes that extend Shape. Magically, statements can
call abstract methods such as draw() with no prior knowledge of what kind of object is
involved. Here's a simple for loop that draws every Shape in the array:

for (int i = 0; i < shapeArray.length; i++)
 shapeArray[i].draw(); // !!!

That code can be written and compiled even before any classes extend the abstract Shape
class. When the program executes, the draw() method is called for whatever real shape is
in the array. You might hear this concept described as polymorphism.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

192

Tip

If you are having trouble understanding abstract classes, think of them this
way. The abstract class is like a tree, which is merely an abstraction, or
generalization, of real trees such as oaks and maples. You can't grow a
tree — you can only grow specific kinds of trees, but you still refer to them
generally as trees. Similarly, in a program, you can't construct objects of
an abstract class — you can instantiate only classes that extend the
abstract class. But you can still refer to those objects as instances of the
abstraction. Circles and Rectangles are Shapes, just as oaks and maples
are trees.

Using an Abstract Class
A practical example of an abstract class will help you to better understand this important
Java programming technique. In this section, you examine a working container class that
knows how to sort data objects of an abstract class.

This is a typical use for an abstract class, and it is especially valuable in creating class
libraries and for distributing work among members of a programming team. One group of
programmers might design the container with no knowledge of the actual objects to be
stored. Another team might create the real object classes. Because the container knows
how to sort objects of a certain abstract class, the second team merely extends the abstract
class in order to use the container.

Note

Chapter 14, "Introducing Collections," describes Java's own collection
container classes, which are far more sophisticated than the simple one
listed here. The sample listings in this section work, but to keep them as
short as practical, they lack many of the features that a real container
class needs.

We start by designing the abstract class, shown in Listing 11-3, TObject.java. (These and
subsequent listings in this section are in the c11/AbstractDemo directory on the CD-
ROM.)

Listing 11-3
TObject.java
001: abstract class TObject implements Comparable {
002: abstract public int compareTo(Object other);
003: abstract public void show();
004: }

Note

You can compile TObject.java using the command javac TObject.java,
but you can't run the resulting class file. A demonstration program using
TObject that you can compile and run appears later in this section.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

193

I named the abstract class TObject to indicate it is a type of object. The abstract class
implements the Comparable interface (more on that in Chapter 12), and it declares two
abstract methods. The first method is required by Comparable — compareTo() compares
the current object for which the method is called with another object passed as a
parameter of the Object class. The second abstract method, show(), displays the contents
of a TObject object.

That's all there is to the abstraction. TObject's contract states merely that it represents
some kind of object that can be compared with another, and that it can be shown. The
exact nature of those objects, and what happens when one is shown, are not part of the
abstraction.

However, because TObject represents objects that can be compared, we have all we need
to design the container class. Listing 11-4, TContainer.java, shows the complete code.

Listing 11-4
TContainer.java
001: import TObject;
002: import java.util.Arrays;
003:
004: class ContainerFullException extends Exception { };
005:
006: class TContainer {
007: // Private instance variables
008: private int size; // Size of objArray
009: private int count; // Count of objects in objArray
010: private TObject objArray[]; // Array of objects
011:
012: // Constructor (n = array size)
013: public TContainer(int n) {
014: if (n <= 0) n = 1; // Minimum allowed size
015: size = n;
016: count = 0;
017: objArray = new TObject[size];
018: }
019:
020: // Insert object into container
021: public void putObject(TObject obj)
022: throws ContainerFullException {
023: if (count >= size)
024: throw new ContainerFullException();
025: objArray[count++] = obj;
026: }
027:
028: // Display all objects in container
029: public void showAllObjects(String label) {
030: System.out.println(label);
031: for (int i = 0; i < count; i++)
032: objArray[i].show();
033: System.out.println();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

194

034: }
035:
036: // Sort the objects in the container
037: public void sort() {
038: if (count > 1)
039: Arrays.sort(objArray, 0, count);
040: }
041: }

The first two lines in TContainer.java import our TObject abstract class and also import
Java's Arrays class discussed in Chapter 10, "Arrays." I named the container class
TContainer (see line 006), again using T for type. The class has three private instance
variables. They are declared private because users of the class have no business directly
accessing our storage methods — which might change in a future implementation. The
three instance variables are

* private int size — This stores the size of the object array, equal to its capacity.
The minimum size is 1.

* private int count — This stores how many objects are in the object array, and is
initially zero.

* private TObject objArray[] — This is the actual array that stores objects of classes
that extend TObject.

Carefully study the third variable. It is an array of objects of classes that extend TObject.
The actual data structure could be something else such as a linked list, or even another
type of container. I used an array to keep the listing simple. It is especially important to
understand that the container can be used to store objects of any class that extends
TObject. At this point, there are no such classes, but we can complete the container's
code nonetheless.

For example, lines 012-018 implement the TContainer() constructor. The minimum
storage size is 1, enforced by the first statement. The three instance variables are also
initialized — a common task for most constructors. The last statement is the most
important:

objArray = new TObject[size];

That constructs an array of TObject, with the capacity to store size objects. It's okay to
create the array using the abstract TObject class because the array contains only
references to objects — the actual objects are created elsewhere, presumably by code that
uses the container.

Method PutObject() at lines 020-026 inserts a new object into the container's array. Again,
since the program is working with only references to objects, it can insert them into the
array with no foreknowledge of what actual kinds of objects they are. In addition, the
method throws ContainerFullException (defined back at line 004) if the container is full.
Obviously a more practically useful container would expand itself if necessary, but the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

195

minimal code used here at least makes the container safe to use. Line 025 inserts the
object, of the TObject abstract class, into the array with this statement:

objArray[count++] = obj;

Method showAllObjects() at lines 028-034 demonstrates another important aspect of
using abstract classes. The method uses a for loop to call the abstract show() method for
each arrayed object:

for (int i = 0; i < count; i++)
 objArray[i].show();

A class that extends TObject must provide a working implementation of show(). But the
container doesn't care what that method actually does — the container needs to know
only that the TObject objects in the array support a show() method. Most important, this
code can be compiled before any real TObject classes and objects are created. The correct
show() method for those objects is called at runtime (you might hear this referred to as
late binding).

Finally in the TContainer class is a method sort() that sorts the array of objects. For
convenience, I use Java's Arrays class sort() method to perform the actual sorting as
explained in Chapter 10 in the section "Sorting Arrays." Because our array is fixed in size
and may contain null references if not completely full, it is necessary to pass index values
to Arrays.sort() as shown:

if (count > 1)
 Arrays.sort(objArray, 0, count);

That's another good illustration of using abstract classes advantageously. Recall that
TObject implements the Comparable interface and provides an abstraction for that
interface's compareTo() method. The method is abstract because at this point there's no
way to know what's needed to compare two real objects. However, since TObject is
Comparable, objects of classes extended from TObject can be sorted. Powerful stuff
indeed.

Note

As mentioned, you can delay compiling and running the complete program
for now. However, you might want to compile TContainer.java using the
command javac TContainer.java. (Change to the c11/AbstractDemo
directory if you haven't done so already.) Keep in mind that you just
compiled a finished container that can sort objects even though at this
point we have not defined the nature of those objects.

The next two listings finish the abstract-class and container example. The first missing
piece is a class that extends TObject and provides some actual data to store in the
container. Listing 11-5, TMyObject.java, declares another class TMyObject.

Listing 11-5
TMyObject.java
001: import TObject;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

196

002:
003: class TMyObject extends TObject {
004: private String s;
005:
006: // Constructor
007: TMyObject(String s) {
008: this.s = s;
009: }
010:
011: // Implement Comparable interface method
012: public int compareTo(Object other) {
013: TMyObject otherObject = (TMyObject)other;
014: return s.compareTo(otherObject.s);
015: }
016:
017: // Implement TObject abstract method
018: public void show() {
019: System.out.print(s + " ");
020: }
021: }

The first line imports the TObject abstract class. Line 003 extends that class as
TMyObject, which is not abstract. (It is possible to extend an abstract class into another
abstract class, but at some point, a non-abstract class is needed in order to use the
abstraction.)

For the demonstration, TMyObject stores a single String instance variable, declared
private to the class. The class constructor initializes the object by saving a string passed
as a parameter. This is a typical design. The abstract class has no constructor — it rarely
needs one, since there's no way to construct objects of an abstract class. The extended
class, however, must have a constructor so the program can, in this case, construct
TMyObject objects. An abstract class may have a constructor if needed, in which case the
extended class constructor would call it as super() with any necessary arguments.

Most important in the TMyObject class are the implementations of the two abstract
methods declared by TObject. The first method, compareTo(), compares the strings in
two TMyObject instances. The statement at line 013 uses a type-cast expression to
convert the Object other parameter to a TMyObject reference. After that, the program
simply calls the String class's compareTo() method to perform the actual comparison. In
your own classes, the method should do whatever is necessary to compare two objects.

Finally in TMyObject is the implementation of the abstract show() method. The
implemented method displays the object's string data by calling System.out.print().

Tip

Non-abstract classes that extend an abstract class must provide
implementations of all abstract methods. Be sure to respect the abstract
class's contract — your methods should perform as closely as possible to
specifications.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

197

One more listing completes the puzzle and provides a runnable program that uses the
preceding TObject, TContainer, and TMyObject classes. Listing 11-6,
AbstractDemo.java, uses our container to store, sort, and display several objects.

Listing 11-6
AbstractDemo.java
001: import TContainer;
002: import TMyObject;
003:
004: class AbstractDemo {
005: public static void main(String args[]) {
006: TContainer container = new TContainer(100);
007: try {
008: container.putObject(new TMyObject("Peach"));
009: container.putObject(new TMyObject("Mango"));
010: container.putObject(new TMyObject("Lime"));
011: container.putObject(new TMyObject("Banana"));
012: container.putObject(new TMyObject("Kiwi"));
013: container.putObject(new TMyObject("Grapefruit"));
014: container.putObject(new TMyObject("Orange"));
015: container.putObject(new TMyObject("Lemon"));
016: container.putObject(new TMyObject("Apple"));
017: container.showAllObjects("Before sorting");
018: container.sort();
019: container.showAllObjects("After sorting");
020: } catch (ContainerFullException e) {
021: System.out.println("Container overflow error");
022: }
023: }
024: }

You may now compile and run the demonstration. Make the c11/AbstractDemo directory
current, and then enter the following two commands:

javac AbstractDemo.java
java AbstractDemo

Note

Compiling the demonstration also compiles its submodules, TObject.java,
TContainer.java, and TMyObject.java, unless these have already been
compiled. The Java compiler checks the date and time of the
resulting .class files, and it recompiles any modules whose .java files are
newer, and thus probably modified. You may compile each module
individually, but it is simpler in this case just to compile the
AbstractDemo.java main program. That's the only module you can run
because it is the only one that provides a main() method.

If you are following along, you should see the following text in your terminal or window:

Before sorting
Peach Mango Lime Banana Kiwi Grapefruit Orange Lemon Apple

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

198

After sorting
Apple Banana Grapefruit Kiwi Lemon Lime Mango Orange Peach

The program begins by importing the TContainer and TMyObject classes. It doesn't have
to import TObject because the finished program doesn't refer to the abstract class. To
create the container, the program executes the statement:
TContainer container = new TContainer(100);

We want to store some real objects in container, an action that takes place inside a try-
catch block at lines 007-020. This is required because, as explained,
TContainer.putObject() throws ContainerFullException. (To prove this works, change the
container size to 5 at line 006, recompile, and run.) Each insertion statement is similar:

container.putObject(new TMyObject("Peach"));

That calls the putObject() method for the container object, and passes it a TMyObject
object constructed by the new operator. Recall that TContainer.putObject() specifies a
parameter of the abstract TObject class (refer back to Listing 11-4, line 021). Because
TMyObject is a kind of TObject object — again, just as an oak is a kind of tree — it is
perfectly fine to pass TMyObject objects to the method.

Lines 017-019 display, sort, and redisplay the objects in the container. Recall from before
that TContainer's showAllObjects() and sort() methods were written with no
foreknowledge of the type of real objects to be shown and sorted. Nevertheless, our
container handles the real TMyObjects with ease. Using an abstract class, the container is
completely generalized. It can display and sort any types of objects of classes extended
from TMyObject.

Summary
* Java provides the three class access specifiers: public, protected, and private. Use

them to allow and restrict access to the class's instance variables, fields, and
methods.

* In general, it is best to declare instance variables private or protected, and to
provide public methods for using such data. In this way, the class controls access
to data, a technique called data hiding or encapsulation.

* Abstract classes provide blueprints from which actual classes are extended. The
extended class implements the abstract class's contract. For example, a Circle
class might implement a draw() method specified in an abstract Shape class.

* Abstract classes and their abstract methods provide the means to create pure
abstractions of data types. In Java, you can write code to use objects of these
types even before the real classes are created. For example, a program can call a
Shape object's draw() method even though the real shape class such as Circle
might not yet exist, or is being developed by another programming team.

* Abstract classes are particularly useful in creating general-purpose structures such
as this chapter's TContainer class.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

199

Chapter 12 Interfaces

As you learned in Chapter 11, an abstract class provides a kind of blueprint from which
other classes are created. An interface is similar in nature, but might be termed a pure
abstraction. Every method in an interface is abstract.

As you learn in this chapter, Java provides several interfaces in its class library. You can
also create your own interfaces.

In This Chapter

* Introducing interfaces

* Extending and implementing interfaces

* Practical uses for interfaces

* Examples of Java interfaces

Introducing the Interface
While an abstract class may define abstract and non-abstract elements, interfaces are 100
percent abstract. Everything in an interface, with the exception of constants (more on that
later), is abstract. An interface has no code, and its methods are mere declarations with no
bodies. Furthermore, because a class can implement more than one interface at a time,
interfaces provide a kind of multiple-inheritance that is otherwise lacking. Classes can
extend only a single class at a time, but they may implement as many interfaces as
needed.

Note

Because an interface has no constructors, no instance variables, no code,
and it cannot be instantiated as an object, conflicts of multiple inheritance
(requiring virtual base classes, for example) in languages such as C++ do
not exist in Java.

An interface is particularly useful in providing the basis for a class hierarchy. For
example, Java's Collection interface declares various common methods for classes like
List and Set. Interfaces are useful also as markers that have no content, but simply
indicate that a class possesses a certain property. The Cloneable interface is one example.
It indicates that a class's objects can be cloned, but the interface provides no details for
implementing that process.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

200

Creating an Interface
You will often use Java's existing interfaces, but you can certainly create your own. This
is a valuable technique for class library designers, and also for programming teams who
need to establish clear guidelines for designing classes and their applications. An
interface looks similar to a class:

public interface MyInterface {
 void myMethod(Object obj);
}

This interface, because it is public, must be declared in a source code file named
MyInterface.java. The word interface appears where class normally does. Inside the
interface's body are one or more method declarations. These may not have bodies —
interfaces never specify any implementation details. Every method in an interface is
abstract, but you don't have to designate them as such using the abstract keyword.

An interface may not have instance variables, but it can specify constants in the following
form:

public interface MyInterface {
 int maximum = 100;
...
}

The integer maximum is essentially like a final static declaration in a class — this must
be so because an interface cannot be instantiated and therefore cannot have instance
variables. The constant must be initialized as shown in its declaration, and its value can
never be changed. Any constants are inherited in the interface's extensions and class
implementations.

Tip

If you find the need for instance variables in an interface — for example, a
value that needs to be unique for different class objects — then an
abstract class is probably more appropriate than an interface.

Exceptions in Interfaces
In designing your interface, now is the time to decide whether a method should throw any
exceptions. Any extensions and implementations of the interface must implement such a
method to throw only its stated exceptions — you cannot, for example, throw additional
exceptions in the implementing class. A typical design might look something like this:

class NewException extends Exception { }
interface NewInterface {
 void newMethod() throws NewException;
}

Any class that implements NewInterface must provide a newMethod() that throws
NewException, and no additional exceptions can be thrown from the implemented
method.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

201

Extending an Interface
You may extend an interface just as you can extend a class; however, you may extend
more than one interface at the same time. For example, if you are going to implement
Java's Cloneable and Comparable interfaces, for convenience you can extend them both
into a new interface:

interface CloneComp
 extends Cloneable, Comparable {
}

The CloneComp interface is an amalgam of the two interfaces that it extends. A class that
implements CloneComp is expected to provide real methods for all those declared
Cloneable and Comparable (in this case, there is a total of only one such method).

Tip

If the sample CloneComp interface were specified to be public, it would
have to be stored in a file named CloneComp.java. Compiling that file
produces a new file named CloneComp.class, which can be imported,
extended, and implemented in other modules. If you are creating and
implementing interfaces in the same file, you may omit the public key word,
but in most cases, interfaces should be public and stored in source code
files named the same and ending in .java.

Having multiple extensions of an interface brings the danger of name conflicts. In this
case, no conflict occurs, but if Cloneable and Comparable each declare a method with the
same name, the eventual class that implements the interface would have to refer to the
methods by qualification with the interface names — Cloneable.someMethod() for
instance. (Some Java technical books go into these issues of name conflicts in detail, but
they are of more interest to language designers than to application developers.)

An interface may also contain nested interface declarations:

public interface MyInterface {
void myMethod(Object obj);
 public interface MyNest {
 void nestEgg(); // Nested interface method
 }
}

Any implementation of the interface would have to provide implementations for each
level of nesting, using nested classes. As with nested classes, nested interfaces can result
in confusing code, so don't use nesting unless you have excellent reasons.

Implementing an Interface
A class implements one or more interfaces, similar to the way a class extends an abstract
class. The implementing class must provide bodies for all methods declared in the
interface. In fact, the only significant difference between an interface and a purely
abstract class is that a class can implement more than one interface — it can extend only

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

202

one abstract class. For example, you might create a class that implements Cloneable and
Comparable like this:

public class MyClass
 implements Cloneable, Comparable {
...
}

The implementing class must provide implementations of any methods that the interfaces
declare. At this stage, it should help your understanding to take a look at an arbitrary
sample program that wraps up the preceding code samples into a working program. (In
the next section, you examine a more practical example.) Listing 12-1, TheInterface.java,
shows some important details in creating and implementing an interface.

Listing 12-1
TheInterface.java
001: class MyException extends Exception { }
002:
003: // Declare the interface (normally would be public)
004: interface MyInterface {
005: void myMethod() throws MyException;
006: }
007:
008: // Implement the interface
009: class MyImplementation
010: implements MyInterface {
011: public void myMethod() throws MyException {
012: System.out.println("in myMethod()");
013: throw new MyException();
014: }
015: }
016:
017: // Main program class
018: class TheInterface {
019: public static void main(String args[]) {
020: MyImplementation m = new MyImplementation();
021: try {
022: m.myMethod(); // Exception always thrown
023: } catch (MyException e) {
024: System.out.println("MyException caught");
025: }
026: }
027: }

Running the sample program displays a message and a note that it has caught an
exception:

in myMethod()
MyException caught

The first message is displayed in the implemented interface method, myMethod() at lines
011-014. The exception on the second line is intentional. Lines 004-006 declare the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

203

interface, MyInterface, with a single method that throws MyException. As mentioned,
this is the time to think carefully about the exceptions your methods might need to throw
— you can't add them later to the implementing class.

Note

The sample interface shown here is not designated public since this entire
program is in one source code file. In most cases, interfaces are declared
public and stored separately.

Lines 009-015 implement the interface — notice the word implements on line 010. Inside
the implementing class, all methods in the interface must be implemented, and the
method declarations must state that they throw any exceptions specified in the interface.
At this point, the method is also made public. For illustration, the sample method's
implementation displays a message, and then throws an exception.

That exception is caught in the main program at line023. Notice also how an object of
MyImplementation is created at line 020 — you use the implementing class as you do
any other class, typically as shown here, to construct an object for which you call one or
more methods (see line 022).

Developing with Interfaces
A practical example shows how to put interfaces to work in Java programs. In Chapter 11,
you examined a container class that uses an abstract class to provide an abstraction of
data that you might need to store, sort, and display. The container itself is a good
candidate for conversion to an interface so that, for example, programmers might change
how the container stores information without affecting the use of the container.

Note

Java's own Collection interface is far more sophisticated than the simple
interface presented here. See Chapter 14, "Introducing Collections," for
more information on Collection and its implementations.

The next three listings make up the demonstration. You can compile each one, but only
the last one runs as an application. All three listings are in the c12/InterfaceDemo
directory on the CD-ROM. Listing 12-2, TContainerInterface.java, shows the declaration
of the program's interface.

Listing 12-2
TContainerInterface.java
001: class ContainerFullException extends Exception { }
002: class NoSuchObjectException extends Exception { }
003:
004: public interface TContainerInterface {
005: void putObject(Object obj)
006: throws ContainerFullException;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

204

007: Object getObject(int n)
008: throws NoSuchObjectException;
009: int getCount();
010: void sort();
011: }

TContainerInterface declares four methods, two of which throw the exceptions declared
at lines 001-002. Method putObject() inserts an object into a container, getObject() gets
an object identified by an integer index, getCount() returns the number of objects in the
container, and sort() sorts the objects according to their rules of comparison. Notice that
the first two methods specify the exceptions they are expected to throw.

The interface contains no code, only method declarations. (As mentioned, it could declare
constants, but we don't need any here.) TContainerInterface differs from the TContainer
class in the last chapter in a few subtle, but important ways:

* The storage mechanism to be used (an array, for example) is not specified.
Interfaces cannot have any real data structures or variables.

* The interface also does not specify any count or size variables, even though it
might seem these would be needed by all implementations. For data, interfaces
can have only static final fields. If you need variables in an interface's design, you
can use an abstract class, but you give up the advantages of multiple inheritance.

* The interface's methods are by default public. By convention, the public preface is
omitted from all method declarations. However, it is not an error to include it.

* The putObject() method (see line 005) declares its parameter as type Object.
Likewise, getObject() returns Object. In the Chapter 11's container class, which
did not have a getObject() method, the abstract TObject was used in the
container's methods. The interface version here is far more general because it can
store any object of any class, since all Java classes are descendants of Object.

* As mentioned, the interface is usually declared public (see line 004), and it must
therefore be in a source code file named TContainerInterface.java.

Compiling TContainerInterface.java (you can postpone that step for now) produces a
class file named TContainerInterface.class, which can then be loaded by an import
declaration. Listing 12-3, TContainer.java, begins by doing exactly that.

Listing 12-3
TContainer.java
001: import TContainerInterface;
002: import java.util.Arrays;
003:
004: class TContainer implements TContainerInterface {
005: int count; // Number of strings in array
006: String strArray[]; // The array of strings
007:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

205

008: // Constructor (not declared in the interface)
009: TContainer(int n) {
010: if (n <= 0) n = 1;
011: count = 0;
012: strArray = new String[n];
013: }
014:
015: // Put an object into the container
016: public void putObject(Object obj)
017: throws ContainerFullException {
018: if (count >= strArray.length)
019: throw new ContainerFullException();
020: strArray[count++] = (String)obj;
021: }
022:
023: // Return object n from the container
024: public Object getObject(int n)
025: throws NoSuchObjectException {
026: if (n < 0 || n >= count)
027: throw new NoSuchObjectException();
028: return strArray[n];
029: }
030:
031: // Return number of objects in container
032: public int getCount() {
033: return count;
034: }
035:
036: // Sort objects in the container
037: public void sort() {
038: if (count > 1)
039: Arrays.sort(strArray, 0, count);
040: }
041: }

TContainer.java fully implements TContainerInterface. The module imports the interface
and also java.util.Arrays. Line 004 shows how to implement an interface as a class, in
this case named TContainer. Two important and typical details begin the implementation
— the declaration of instance variables count and strArray, and a constructor. Of course,
your own classes provide whatever content is required, but it is highly typical for the
implementing class to define some data elements and at least one constructor. These
items cannot be specified in the interface; they must by supplied by the implementing
class.

In this example, I designed the implementing TContainer class to store an array of String
objects. The class could, however, store any type of objects. The constructor, as is typical,
initializes the class's instance variables (see lines 008-013).

The other four methods in the class provide implementations of the methods specified in
the interface. The first two of these, putObject() and getObject(), list the same exceptions
as in the interface. As mentioned, this is not optional. Your implementations are required

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

206

to satisfy the contract that the interface makes with its users. This may seem overly
restrictive, but as a result, any module that uses TContainerInterface is assured that its
methods throw only the stated exceptions, providing a simple but effective way to catch
any and all errors that might occur.

Line 039 calls Arrays.sort() to sort the container's String array. This is possible because
String implements the Comparable interface, and therefore, String objects can be
compared. This is another good example of how, using interfaces and object-oriented
techniques, the resulting code is greatly simplified. Instead of writing yet another sorting
method, the program simply calls the one that Java provides in the Arrays class.

Listing 12-4, InterfaceDemo.java, uses the implemented interface to create a container
object, insert some data into it, and then sort and display the results.

Listing 12-4
InterfaceDemo.java
001: import TContainerInterface;
002: import TContainer;
003:
004: class InterfaceDemo {
005:
006: // Show objects in container
007: public static void showAllObjects(
008: TContainerInterface c, String label) {
009: System.out.println(label);
010: try {
011: for (int i = 0; i <= c.getCount() - 1; i++)
012: System.out.print(c.getObject(i) + " ");
013: System.out.println();
014: } catch (NoSuchObjectException e) {
015: // Should never execute
016: System.out.println("\n *** Error in for loop!");
017: }
018: }
019:
020: // Main program demonstrates using the container
021: public static void main(String args[]) {
022: TContainer container = new TContainer(100);
023: try {
024: container.putObject("Mexico");
025: container.putObject("Canada");
026: container.putObject("United States");
027: container.putObject("Honduras");
028: container.putObject("Bahamas");
029: container.putObject("England");
030: container.putObject("Germany");
031: container.putObject("France");
032: ShowAllObjects(container, "Before sorting");
033: container.sort();
034: ShowAllObjects(container, "After sorting");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

207

035: } catch (ContainerFullException e) {
036: System.out.println("Container overflow error");
037: }
038: }
039: }

You may now compile and run the demonstration. Change to the c12/InterfaceDemo
directory, and enter the following two commands:

javac InterfaceDemo.java
java InterfaceDemo

On screen, you see the following report (shortened here to save space):

Before sorting
Mexico Canada United States Bahamas England Germany
After sorting
Bahamas Canada England Germany Mexico United States

The program begins by importing the interface and implementing class. The interface is
needed by method showAllObjects(), which deserves a close inspection. It is declared as

public static void showAllObjects(
 TContainerInterface c, String label) {...

The first parameter c is an object of type TContainerInterface. As you know, the interface
itself cannot be instantiated as an object, but an object of the implementing class is
assignment compatible with this reference. As such, showAllObjects() works with any
container that implements TContainerInterface. The method doesn't care or need to know
anything about the container's content; only that its implementing class satisfies the rules
and regulations specified by the interface. For example, take a look at the method's for
loop at lines 011-012:

for (int i = 0; i <= c.getCount() – 1; i++)
 System.out.print(c.getObject(i) + " ");

Methods getCount() and getObject() are declared in TContainerInterface, and so, we can
write statements that assume any objects of an implementing class provide real code for
these methods. However, there is one wrinkle — the output statement assumes that
whatever type of object is in this container, it can be converted to a string. Fortunately,
this is true of all classes because Object provides a toString() method.

Tip

Object.toString() provides a default implementation that returns an object's
class name and hash code (more on that in Chapter 14). Your own
classes should probably override toString() to provide a more sensible
string representation of any objects, but that's up to you.

Notice also that in ShowAllObjects(), because GetObject() throws
NoSuchObjectException, the for loop must be in a try-catch block. This is a good
example of a checked exception — one that Java checks is properly specified and caught.
Any such exception indicates a programming error because, in this case, there can never
be an instance when the loop requests a non-existent object. But, although the exception

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

208

is never actually thrown, it must still be caught. Perhaps this might seem excessively
rigorous, but it is far better for code to be overly robust than the opposite.

You might rightly wonder whether an interface is even needed in the preceding examples.
However, consider that other modules might need to refer to container objects as
abstractions and not as real objects. For example, a module could create an array of
containers, using code such as

TContainerInterface cArray[] = new TContainerInterface[10];

Other code might create objects of various TContainerInterface implementations:

cArray[0] = new TContainer(100);
cArray[1] = new TGraphicsContainer(50);
cArray[2] = new TAccountContainer(25);

That assumes TContainer, TGraphicsContainer and TAccountContainer are each classes
that implement TContainerInterface. As such, objects of those classes can be assigned to
positions in the array — they are all assignment compatible to TContainerInterface
references. Using the showAllObjects() method from the demonstration program, all
objects in the array's dissimilar containers are easily shown using a simple loop:

for (int i = 0; i < 3; i++)
 showAllObjects(cArray[i], "Container # " + i);

This is somewhat hypothetical, but the code demonstrates how the complete abstraction
of an interface leads to simple programming that can handle a wide variety of real data.

Java Interfaces — Some Examples
Java provides several useful interfaces introduced in this section. Because some of these
require an understanding of techniques not yet introduced, some of the following
discussions are necessarily brief. It is useful, however, to be aware of the existence of at
least the following interfaces.

Cloneable Interface
As mentioned in this chapter, Cloneable is an example of a marker interface, one that has
no content. Java declares Cloneable simply as

public interface Cloneable {
}

Classes implement Cloneable to indicate that their objects can be cloned by calling
Object.clone(). They also usually implement that method, even though the Object class
provides a default native implementation. You might think that cloning objects is a
simple task, but it can be complicated by a variety of factors, and it is vital to think
carefully about how exactly you want your objects to be cloned in any class that
implements Cloneable.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

209

Note

Earlier Java releases misspelled Cloneable as Clonable. Always use the
newer, correct spelling, Cloneable.

An example illustrates how easy it is to get into cloning trouble. Listing 12-5,
CloneDemo.java, shows the right and wrong ways to implement the Cloneable interface
and override Object.clone().

Listing 12-5
CloneDemo.java
001: // A simple string container class
002: class IntContainer implements Cloneable {
003: private int size; // Size (capacity) of array
004: private int intArray[];
005: public IntContainer(int n) {
006: intArray = new int[n];
007: size = n;
008: }
009: public int getValue(int n) {
010: return intArray[n];
011: }
012: public void putValue(int index, int value) {
013: intArray[index] = value;
014: }
015: public int size() {
016: return size;
017: }
018: /*
019: // The WRONG way to clone
020: public Object clone() throws CloneNotSupportedException {
021: return super.clone(); // ???
022: }
023: */
024: // The RIGHT way to clone
025: public Object clone() throws CloneNotSupportedException {
026: IntContainer temp = (IntContainer)super.clone();
027: temp.intArray = (int[])intArray.clone();
028: return temp;
029: }
030: }
031:
032: // Main program class
033: class CloneDemo {
034:
035: // Display values in two containers side-by-side
036: public static void showContainers(String msg,
037: IntContainer c1, IntContainer c2) {
038: System.out.println("\n" + msg);
039: for (int i = 0; i < c1.size(); i++) {
040: System.out.print(i + " : " + c1.getValue(i) + " \t");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

210

041: System.out.println(c2.getValue(i));
042: }
043: }
044:
045: public static void main(String args[]) {
046: // Construct a container and randomize its content
047: IntContainer original = new IntContainer(10);
048: for (int i = 0; i < original.size(); i++)
049: original.putValue(i, (int)(Math.random() * 100));
050: try {
051: // Clone the container
052: IntContainer clone = (IntContainer)original.clone();
053: showContainers("Before change", original, clone);
054: // Modify a value in the clone at index 1
055: clone.putValue(1, clone.getValue(1) * 2);
056: showContainers("After change", original, clone);
057: } catch (CloneNotSupportedException e) {
058: System.out.println(e.getMessage());
059: }
060: }
061: }

Before examining the program, take a look at how Object declares the clone() method:

protected native Object clone()
 throws CloneNotSupportedException;

Because clone() is protected, only Object itself and any extended classes can call clone().
This is a safety mechanism that helps prevent the improper use of the method. Class A
can call its own inherited clone() method, since an extended class has access to all public
and protected members inherited from its superclass. However, another class B that is not
derived from A cannot call A's clone(). B is not a subclass of A, and therefore, it is
denied access to A's protected and private members. This restriction generally forces
programmers to override Object.clone() in order to designate it as public, and therefore,
callable for objects of the class. This doesn't ensure that you write the method correctly,
but it at least encourages you to think about what the method should do.

To demonstrate good and bad ways to write a clone() method, the sample program
declares a simple integer container class at lines 002-030. The class declares an array of
int values, and it provides methods to get and put values in the array. Lines 018-023,
commented out in the program, show the wrong way to clone. Don't do this:

public Object clone() throws CloneNotSupportedException {
 return super.clone(); // ???
}

This simply converts the inherited protected method to public and returns the default
clone()'s result. However, the overridden method fails to work correctly because the
default implementation simply copies one object to a new one; it doesn't clone any
contents in the original. The effects of this can be seen by enabling the commented out
clone() method in the demonstration program, and running. The program constructs an

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

211

original container and initializes it to values at random (lines 047-049). It then clones
original by calling clone():

IntContainer clone = (IntContainer)original.clone();

After that, the program changes one of the values in the cloned container at index
position 1:

clone.putValue(1, clone.getValue(1) * 2);

Despite that change, running the program shows that the two arrays still contain the same
values at the same index positions:

Before change
0 : 32 32
1 : 38 38
...
After change
0 : 32 32
1 : 76 76

Obviously, changing a value in clone (right) resulted in a like change to original (left).
Although the containers were cloned, they appear to address the same array of values in
memory, a very bad error that must be avoided.

A proper clone() ensures that not only the cloned object, but also its contents, are
uniquely copied. To illustrate, the sample container class implements a correct version of
clone(). It's important to understand each step in the correct method, so here it is again for
close inspection:

public Object clone() throws CloneNotSupportedException {
 IntContainer temp = (IntContainer)super.clone();
 temp.intArray = (int[])intArray.clone();
 return temp;
}

As in the bad method, the first statement calls super.clone(), the default implementation
provided by Object. This step creates what you might call a raw clone, assigned here to
an object, temp, using a type-cast expression to indicate the real type of object being
cloned. Although the raw clone is a unique object, any instance variables in that object
are simply byte-for-byte copies of those in the original. This is adequate for variables of
simple types like int and double. But if any such instance variables are object references
— including arrays — they must each be cloned separately. In this case, the second
statement in the correct clone() method calls the int array's clone() method and assigns
the result to the temporary object's intArray instance variable. Java arrays implement the
Cloneable interface, so we can be sure that this step creates a fresh copy of the array and
its contents. Finally, the properly initialized and cloned temp object is returned as the
method's result.

If you are following along, enable the correct clone() method, compile, and run. Now,
after changing a value in the cloned container, the arrays properly show different values
at index position 1 after the change to the cloned container (right):

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

212

Before change
0 : 18 18
1 : 28 28
...
After change
0 : 18 18
1 : 28 56

Note

You may not always be able to pass on cloning responsibility as I do here
by calling a method such intArray.clone(). In your own classes, you must
do whatever is necessary to create a fresh copy of any object references
in the class — for example, by calling new to create fresh objects.

Comparable Interface
You've seen an example of the Comparable interface in Chapter 11 (Listing 11-3,
TObject.java). Another interface can extend Comparable, or a class can implement it, to
indicate that objects of the class can be compared by calling the compareTo() method. In
general, a class implements Comparable like this:

class AnyClass implements Comparable {
 public int compareTo(Object other) { ... }
 // ... Other class declarations
}

The public compareTo() method must be declared as shown. However, it may be
designated abstract if this is an abstract class, as in the last chapter's TObject class. The
method is called in reference to an object, call it A. The other Object parameter passed to
the method is to be compared to A; call this one B. The method is expected to return –1 if
A < B, 0 if A = B, and +1 if A > B. In many cases, you can pass this responsibility to
another class. For example, if your class declares a String instance variable s, you can
write compareTo() as follows:

public int compareTo(Object other) {
 String otherS = (String)other;
 return s.compareTo(otherS);
}

No data is copied in the first statement — it merely casts the generic Object other
parameter to a String reference, otherS. The String class's compareTo() method result is
then returned for this object's string variable s compared to otherS.

Runnable Interface
Java's Runnable interface provides a single method, run(), used in writing threaded code.
Runnable is declared as

interface Runnable {
 public abstract void run();
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

213

I discuss threads and the Runnable interface in Chapter 19, "Threaded Code," so I won't
go into it in detail here. However, Runnable is used generally in designing a class for
object methods that execute in a thread, but when you don't need the extra effort required
to extend the Thread class.

Collection Interface
The Collection interface, in the java.util package, is the basis for all Java collection
classes such as List and Set. (Collection classes are also sometimes referred to as
container classes.) This interface is relatively new to Java, first appearing in JDK 1.2, and
it provides a common abstraction that all collections share — as all good interfaces
should do. For example, the Collection interface declares methods such as isEmpty() and
contains().

Chapter 14 discusses Collection and container classes in detail, so I won't describe this
interface further here. You might, however, want to look at its source code in the
jdk1.3/src/java/util directory, assuming you installed the source code files as suggested in
Chapter 3, "Getting Started with Java 2." Collection is a good example of a relatively
complex interface.

Tip

If you want to create your own container class, implement Collection and
provide working methods for all those declared in the interface. You can
then pass objects of your container class to methods in other modules that
accept a Collection interface parameter. Furthermore, your class objects
are entirely replacement-compatible with other Java Collection
implementations such as List and Vector.

Summary
* Interfaces are pure abstractions. They are particularly useful in providing the basis

for class hierarchies and for specifying the characteristics to be shared among
related classes. For example, Java's Collection class is the basis for the language's
container class library.

* Interfaces provide a kind of multiple inheritance for Java. Other interfaces can
extend multiple interfaces, and classes can implement more than one interface at a
time. Conversely, classes can extend only one class at a time.

* An interface may declare only constant fields and methods. An interface may not
have instance variables, nor constructors. It is never possible to create an instance
of an interface. All methods in an interface are by default abstract and public.

* Interfaces can be nested. However, the results may be confusing, and this
technique should be used only for good reasons.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

214

* Marker interfaces contain no content, but they indicate that a class possesses a
certain property. For instance, a class that implements the Cloneable interface
states that objects of the class can be cloned by calling Object.clone(). However, it
is still your responsibility to provide a correctly written clone() method. Simply
implementing Cloneable is not enough to ensure correct cloning.

* Java provides several useful interfaces. Some of them are introduced in this
chapter — Cloneable, Comparable, Runnable, and Collection.

Chapter 13 Packages
Probably the most inconsistent feature among the world's collection of programming
languages is the concept of a module. One language might use object code files to
modularize programs, another might use libraries of some kind, another uses units, and
some still rely on that old standard, the lowly include file.

Java provides its own unique embodiment of a module — the package. All of Java's
classes are members of one or another package, as are the classes you create. A package
provides modularity to Java programs, and it also helps avoid naming conflicts in a
sensible way. Any program larger than a breadbox will benefit from modularization using
packages. In this chapter, you learn how to create your own packages, and you take a
look at some of the more useful packages that Java provides.

In This Chapter

* Introducing packages

* Importing Java packages

* Packages and access rules

* Creating and naming packages

* Java's standard packages

Introducing Java Packages
A package is simply a group of related classes (it could have just one, but usually
provides several). For example, a set of graphics classes might be grouped into a package
named graphics. To use the classes, one or more modules in a program can import the
entire package with a declaration such as

import graphics.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

215

The asterisk indicates to the compiler that it should import all classes in the graphics
package. To import just one class, use a declaration such as

import graphics.Rectangle;

It is not correct to import the package itself. You can import only classes and interfaces,
not packages. For example, this causes a "cannot resolve symbol" compiler error:

import graphics; // ???

Note

Packages may include interfaces, abstract classes, and public classes.
For this chapter, I generally discuss classes only, but the same
information here applies to interfaces and abstract classes.

Importing Java Packages
Every Java source code file imports the java.lang package as though the file begins with
the declaration

import java.lang.*;

It's not an error to do that, but it is never necessary. Java also provides a number of
standard packages, some of which you have already seen, that are not automatically
loaded. For instance, sample programs in the previous two chapters import the Arrays
class with the declaration

import java.util.Arrays;

If you want, you can import the entire java.util package with the declaration

import java.util.*;

It is generally better to import only those classes and interfaces that are actually used in
the source code module. But because any one class might import several others, you may
still end up importing the entire package.

Some packages provide one or more subpackages, such as java.util.jar, a subpackage of
java.util. Importing a package does not import any subpackages. You must do that
explicitly using statements like these:

import java.util.*;
import java.util.jar.*;

The first statement imports classes and other modules from java.util. The second
statement imports classes and modules from java.util.jar.

Tip

To find what classes belong to which Java packages, install the source
code files as suggested in Chapter 3, "Getting Started with Java 2." You
can then browse the jdk1.3/src/java directory in which you find all of Java's
standard packages. Each package is stored in a subdirectory. Each class

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

216

in each package is stored in a separate .java file named the same as the
class.

The import Declaration
As you have seen in many of this book's sample programs, to use a class or an interface
declared in a package often requires an import declaration. Actually, however, this isn't
the whole story: import declarations are an optional convenience, and they are technically
not required. For example, to use the Stack class in the java.util package, a module can
import the class using the declaration

import java.util.Stack;

That tells the compiler to load the declaration for the class and make it available to
statements such as the following, which constructs a Stack object:

Stack storage = new Stack();

Alternatively, you may specify the full package and class name without using an import
statement. For example, the following statement fully qualifies the Stack class, telling the
compiler in which package it is located:

java.util.Stack storage = new java.util.Stack();

Using fully qualified expressions is more work, of course, but it eliminates the need for
an import statement. The long form is possibly useful for debugging — for example, to
use a temporary test version of a class. An import statement, though, is preferred in most
cases.

Some Java documentation and books indicate that you can import all packages with the
declaration

import java.*; // ???

However, because that doesn't import any subpackages such as java.util or java.awt, and
because the java package contains only subpackages, the preceding statement has no
practical value.

Packages and Access Rules
As you learned at the beginning of Chapter 11, "Abstract Classes," the class access rules,
public, protected, and private, define the rights of access to class members. However,
because related classes often need direct access to one another's members, Java relaxes its
access rules for classes within the same package. Qualified for classes in packages, the
revised access rules are

* public — Users who have access to the class have access to all members declared
public. Public classes in the same package have access to all public declarations in
other public classes.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

217

* protected — The class's own methods, and those in any classes extended from this
one, have access to protected members. Protected members are also accessible to
all classes within the same package. The classes do not have to be related through
inheritance.

* private — Only the class's own members have access to a private member. Even
an extended class cannot access a private member of a superclass. Classes in the
same package do not have access to other classes' private declarations.

* none — Declarations not declared public, protected, or private are said to be
friendly. (This is not a Java reserved word.) Friendly declarations are accessible to
the class itself, to an extended class, and to any statements in classes within the
same package. Friendly declarations are private outside of the package.

Note

The revised access rules apply also to classes defined in the same
compilation unit — that is, the same source code file. Of course, the class
itself has access to all of its own members no matter how they are
declared.

The revised rules make it a little easier for classes in the same package to communicate.
For instance, if public classes A and B are in the same package, objects of type B may
directly access A's public, protected, and friendly declarations, even if B is not a subclass
of A. But if A and B are in different packages, then B would have access to A's public
and protected members only if B extends A. Otherwise, only A's public members are
accessible to B.

A small demonstration that you can type and compile helps clarify these concepts. This is
just throw-away code, so it's not on the CD-ROM. Create a fresh directory, and in it save
the following class in a file named A.java:

// A.java
public class A {
 int x = 123;
}

You may compile the class with the command javac A.java. The integer instance
variable is friendly (it has no explicit access specifier). As a result, another class can
import A, and access the friendly variable for an object of type A. Type in and save
another class in a file B.java in the same directory:

// B.java
import A;
public class B {
 public void f(A a) {
 int q = a.x;
 }
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

218

Compile the class with the command javac B.java. B's public method f() can access its
parameter object's friendly variable x because A and B are in the same package —
namely, the application itself.

Note

An application's classes are members of an unnamed package. Thus
every class in a Java application is a member of some package.

Referring back to A.java, if you declare x to be private, class B no longer compiles. The
declaration could be public or protected, and the program would work. But if classes A
and B are in different packages, then the friendly declaration in A would no longer be
accessible to B.

The next section presents a more detailed example of these access rules and their effect
on packaged classes, and also explains how to create your own named packages.

Programming with Packages
Creating your own packages is a great way to preserve useful classes that you construct
during the course of writing an application. I like to call them named packages to
distinguish them from Java's standard packages and from those provided by third-party
vendors. By organizing your program's classes into your own named packages, you make
classes more readily available to future applications, and a little thought now in collecting
generally useful classes into packages will go a long way in the future.

Package Names
You can name your own packages whatever you like. However, there is the obvious and
very real danger that your package names will conflict with those from another source.
To help prevent class name conflicts, Sun recommends using your URL or domain name
in reverse as a preface to all of your packages. Employing this idea, if I have a package
named graphics, I'd name it as follows:

package com.tomswan.graphics;

This isn't foolproof — I can't prevent somebody from using my name. But the convention
ought to work well enough in most cases. Don't have a URL? Use your e-mail address:

package com.hotmail.yourname.graphics;

Tip

By convention, package names should be in lowercase. This isn't required,
but due to differences in file system naming conventions, using all
lowercase is highly recommended for package names.

How to Create a Package
Creating a named package is easy. Simply use a declaration such as

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

219

package stuff;

That must come before any other declarations or statements except comments in the
source code file. A package declaration states that subsequent classes in the file are to be
collected within the named package — stuff in this case — and as such, the .class files
are to be found in a subdirectory of that same name. The source code files in a package
may declare any classes, and they may import other classes, either of your own design or
from Java's standard library. As I've mentioned, it's usually best to declare one class per
file named the same — you must do so if the class is public, as it usually is.

Tip

Classes within the same package automatically import all other classes in
that package. You don't have to use an import declaration to access
classes in the same package, although you may do so for documentation
purposes.

Demonstration Package
The following four listings demonstrate packages and show how to create their files and
directories. While describing each file, I'll point out several important details concerning
access rules among the classes. Java uses the directories to locate the packaged classes, so
it's important that each file be stored where the compiler can find it. In this case, the main
directory is named packageTest (on the CD, this is in the c13 subdirectory). Inside
packageTest is a subdirectory named stuff, corresponding with the package name. Listing
13-1, TClass1.java, shows the first class in the stuff package.

Listing 13-1
Stuff/TClass1.java
001: package stuff;
002:
003: public class TClass1 {
004: String name; // Friendly instance variable
005: public TClass1(String name) {
006: this.name = name;
007: }
008: public String getName() {
009: return name;
010: }
011: }

Note

As always in this book, and as shown in your Web browser if you are
viewing listings online, a slash is used as the pathname separator. If you
are using Windows, remember to change this to a backslash for typing
commands at a DOS prompt.

The file begins with the package declaration and as is the usual case, provides one public
class named the same as the file, TClass1. The demonstration class declares a friendly

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

220

instance variable, a String object name. The class constructor initializes name to a
parameter passed by a statement (an example follows in a moment) that creates a TClass1
object. Method getName() returns this name. The class method has access to name
because the method and instance variable are members of the same class.

Listing 13-2, TClass2.java, is another class in the same stuff package. It too is stored in
the PackageTest/stuff directory.

Listing 13-2
Stuff/TClass2.java
001: package stuff;
002:
003: public class TClass2 {
004: public String returnName(TClass1 obj) {
005: return obj.name; // Access friendly variable in TClass1
006: }
007: }

Again, the source file begins with the package name, followed by a public class
declaration, in this case, TClass2. This second class in the stuff package declares a single
public method, returnName(). In addition, that method declares a parameter object of
type TClass1. It can do this because a package imports all of the classes in that same
package, so no import declaration is needed for the new class to use TClass1.

The method's return statement at line 005 shows that TClass2 may access TClass1's
friendly name instance variable. This is because of the rule that all classes in the same
package may access other classes' public, protected, and friendly members.

Note

All classes and interfaces in a package must declare the same package
name, and that name must reflect the directory in which the modules exist.
Thus in this example, TClass1 and TClass2 must each declare
themselves to be members of package stuff, and their files must be in a
directory named stuff.

A third test class in Listing 13-3, TClass3.java, shows how to create another package.
This file is stored on the CD in the PackageTest/morestuff subdirectory.

Listing 13-3
MoreStuff/TClass3.java
001: package morestuff;
002:
003: public class TClass3 {
004: private String name;
005: public TClass3(String name) {
006: this.name = name;
007: }
008: public String myName() {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

221

009: return name;
010: }
011: }

The source code file begins with a package declaration that creates a second package,
morestuff. TClass3 resembles the first class, TClass1, in the stuff package. However, this
time the class's name instance variable is made private to the class (see line 004). This
means that users of this class must call a member function such as myName() at line 008
to access the instance variable. No class, whether in the same package or not, has access
to another class's private declarations.

Tip

To compile all classes in a package, change to its directory and enter the
command javac *.java.

I'll explain more about access rules among packaged classes in a bit. First, however, we
need a test program that uses the three preceding classes. Listing 13-4, PackageTest.java,
imports the packaged classes and creates objects of each one. This file is stored in the
PackageTest directory.

Listing 13-4
PackageTest.java
001: import stuff.*;
002: import morestuff.TClass3;
003:
004: class PackageTest {
005: public static void main(String args[]) {
006: TClass1 x = new TClass1("Message 1");
007: System.out.println("via TClass1: " + x.getName());
008: TClass2 y = new TClass2();
009: System.out.println("via TClass2: " + y.returnName(x));
010: TClass3 z = new TClass3("Message 2");
011: System.out.println("via TClass3: " + z.myName());
012: }
013: }

Note

If you have trouble compiling PackageTest.java, review Chapter 3's
installation instructions. In order for the compiler to locate the stuff and
morestuff packages, the CLASSPATH variable must be set to include the
current directory, represented in DOS, Linux, and UNIX as a single period.

You may now compile and run the program using the two commands shown here in bold.
Following those commands is the program's output:

javac PackageTest.java
java PackageTest
via TClass1: Message 1
via TClass2: Message 1

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

222

via TClass3: Message 2

Tip

Compiling a program that uses classes in packages also compiles the
packaged class source code files if necessary. You may, however,
compile each class and any host programs separately if you want.

The test program constructs three objects, x, y, and z, which refer to the three packaged
classes. The first two lines in the program show two different ways to import the classes
from their named packages — using an asterisk to import all classes and specifying an
individual class by name. These are the same techniques used to import Java's standard
packages.

Some small tests and modifications to the preceding four listings help clarify access rules
among packaged classes. Suppose you decide to extend the stuff package's TClass1 class.
Doing this in the main program (Listing 13-4, PackageTest.java) as follows does not
work:

class TDerived extends TClass1 {
 public TDerived(String name) {
 super(name);
 }
 public void f() {
 System.out.println(name); // ???
 }
}

The derived class must have a constructor as shown with a String parameter because
TClass1 does not declare a default constructor (one with no parameters). The derived
class method f(), however, does not compile because it attempts to access the friendly
name instance variable inherited from TClass1. This produces the compiler error:

PackageTest.java:13: name is not public in stuff.TClass1;
cannot be accessed from outside package

If you change TClass1.name to protected status, then the program compiles. This is
because extended classes have access to public and protected members inherited from
their superclasses. Classes within the same package have similar access. However,
friendly declarations are accessible to other classes only in the same package or
compilation unit.

Note

A common misconception is that friendly members are equivalent to
protected members. This is not the case. A friendly member is accessible
throughout the same package or compilation unit, but is otherwise private.

If you change TClass1.name to private access, then the program doesn't compile at all.
Even though TClass2 is in the same package as TClass1, it has no access to any private
declarations in other classes, whether they are in the same package or not. The preceding

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

223

TDerived class also has no access to inherited private members. In Java, private means
private!

One more test clarifies access rules among classes in separate packages. Refer back to
Listing 13-3, TClass3.java, which declares the morestuff package and the test class
TClass3. Suppose that you want the TClass3 class to import the classes in the stuff
package with the following declaration added to TClass3.java:

// Add to TClass3.java
import stuff.*;

That's perfectly fine — a package may certainly import the classes in other packages.
However, TClass3 does not have access to any friendly declarations in the other
package's classes. An attempt to add a new method as follows to TClass3 produces a
compilation error that says the name symbol cannot be resolved:

// Add to TClass3
public String f(TClass1 obj) {
 return obj.name; // ???
 }

The TClass1.name instance variable is friendly, but only to classes within the same
package. This time, changing that instance variable's access to protected still does not
allow the program to compile because TClass3 is not a subclass of TClass1. The only
way that a TClass3 member can access TClass1.name is if that instance variable is made
public (not recommended), or by calling a method in TClass1 (best solution).

Java's Standard Packages
Java provides a treasure house of standard packages, some of which you have already
met such as java.util and java.lang. The rest of this book describes many of the classes in
these and other packages (browse the jdk1.3/src/java directory to find the source code
files for these packages and their numerous classes):

* java.applet — This package provides the means to create Java applets that run
under the control of a Web browser and are typically downloaded over the
Internet. Chapter 20, "AWT Applets and Applications," explains how to create
Java applets using this package.

* java.awt — In this package are the many classes that make up Java's Abstract
Window Toolkit (AWT). This extensive package provides a class-based graphical
user interface with windows, buttons, dialog boxes, and other controls for applet
and application programming. Chapter 15, "List Collections," describes how to
use many of the classes in this package.

* java.awt.* — Within java.awt are numerous subpackages such as java.awt.color,
java.awt.font, and java.awt.image. These packages group related classes that
supplement AWT's main classes.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

224

* java.beans — This package provides the basic elements for JavaBeans —
components that support the concept of design-time property editors. You won't
find useable JavaBeans in this package. Real beans provided by third-party
vendors base their designs on the java.beans package to ensure that the
components are useable in all Java visual development systems such as JBuilder
and Visual Café.

* java.io — Classes in this package provide input and output services for reading
and writing file data, for accessing keyboard input, and for printing. Chapter 24,
"Input and Output Techniques," explains how to use many of this package's
classes.

* java.lang — This package provides wrapper classes such as Character, Integer,
and Double. It also provides system-standard classes such as String and
StringBuffer. The Java compiler always loads all of these packages. You never
need to explicitly import any classes from java.lang. Many of the classes in this
package are described throughout this book.

* java.math — There are only a few classes in this package, which is primarily of
interest to hard-core mathematics programmers. Applications probably won't use
any of these classes, such as BigInteger and BitSieve (a prime number generator).
Don't confuse this package with the java.lang.Math class, described in Chapter 9,
"Numeric Classes."

* java.net — This package provides network, socket handler, and Internet utility
classes.

* java.rmi — Classes in this Remote Method Invocation package provide support
for distributed code controlled by a remote interface. With the help of the classes
in this package, you can create Java applications that run in pieces distributed
over different systems.

* java.security — Use the classes in this package, and its several subpackages, to
implement security tools such as digital signatures, encryption keys, and
certificates.

* java.sql — This package provides an implementation of Structured Query
Language database field types and methods. Depending on your system, this
package's classes may be implemented in terms of a specific database system, or
as by default, as a direct mapping of the ODBC (open database connectivity)
standard.

Note

There is some controversy over what SQL stands for. Many Java
documents claim it means "System Query Language." This book's
technical editor votes for "Standard Query Language," while the
development editor and I believe "Structured Query Language" is correct.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

225

By the way, a lot of people pronounce SQL as "sequel," but some say
each individual letter.

* java.text — Classes in this package provide parsers and formatters — for example,
the DateFormat class, which can format date strings according to the current
locale.

* java.util — Every Java application and applet probably uses at least one class
from this miscellaneous package. You have seen several examples of this
package's classes in preceding chapters — for example, the Random class
(Chapter 9, "Numeric Classes") and the Comparator class (Chapter 10, "Arrays").
In addition, java.util provides the Collection interface and its implemented
container classes such as List and Set. Chapter 14, "Introducing Collections,"
explains how to use the java.util package's container classes.

* java.util.jar — This subpackage, contained within the java.util package, provides
Java's own data compression system for creating and using .jar files. This format
has replaced the older .zip compression that Java formerly used for making
compiled classes available to Web browsers. However, many browsers and
operating systems still use the .zip file format.

* java.util.zip — This subpackage supports the .zip file compression format, which,
as mentioned in the preceding paragraph, is replaced by the newer .jar format.

Summary
* Packages modularize Java classes by grouping related classes. For example, a

graphics package might provide classes that perform graphics operations.

* Java provides many standard packages in its class library. You can also create
named packages to modularize programs and to create class libraries. A package
may contain interfaces, abstract classes, and public classes.

* To avoid name conflicts between your packages and those from other sources,
Sun recommends using your URL or domain name in reverse as a preface to the
package name. If you don't have a URL, use your e-mail address.

* Import a package's classes using an import declaration. Use an asterisk to import
all classes, or specify only the individual class you need. Classes within the same
package automatically import all other classes in that package.

* Java's class access rules are relaxed for the classes within the same package.
Public members are available to all users of the class. Protected members are
available to all classes within the same package whether or not those classes are
related through inheritance. Private members are never accessible outside of a
class, even for classes in the same package.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

226

* Friendly class declarations — those that do not specify public, protected, or
private — are accessible to all classes within the same package. Outside of the
package, friendly declarations are private. These same rules apply to non-public
classes in the same compilation unit (as in many of this book's sample programs).

Chapter 14 Introducing Collections
The java.util package provides a grab bag full of collection container classes and related
interfaces from which you can construct containers for storing any kind of object. Each
collection container provides specific characteristics and methods related to the
container's structure and intent. For example, a TreeSet container maintains data sorted in
a tree-like structure, while the LinkedList container provides for super-fast insertions and
removals of objects.

This chapter introduces Java's collection class library, lists its interfac es and classes, and
diagrams their relationships. The rest of the chapters in Part III, "Collections," describe
how to use many of these elements to store data and how to construct your own custom
collection classes.

Note

Some texts refer to Java's container class library as collection classes.
However, because the library contains an interface named Collection,
from which some but not all other classes and interfaces are derived, that
term can be ambiguous. For that reason, I call this group of classes Java's
collection container class library, or just container library.

In This Chapter

* Introducing collection classes

* Container interfaces

* Abstract and concrete container classes

* Interface and class diagrams

* The Collection Interface

* Creating and using containers

* Container exceptions

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

227

Class Hierarchy
A first encounter with Java's container library confuses most everybody. The library
provides a seemingly jumbled set of interfaces, abstract classes, and concrete classes
(ready-to-use implementations). The relationships among these elements are complex and
not always obvious, but once understood they reveal the classes to be remarkably well
organized and intelligently designed.

To help you learn how to use the library and understand the chapters in this part, this
chapter introduces Java's container library in two ways: in table form, listing interface
and class names, and diagrammatically, showing the relationships among those same
elements. Some of this information won't make much sense until after you begin using
the classes, so plan on referring back here as you read the rest of the chapters in this part.

The container library contains roughly four categories of declarations:

* Container interfaces — These are pure abstractions (as are all interfaces) from
which all of the library's abstract classes and concrete classes are ultimately
derived. The library's interfaces stipulate the most general of methods that
containers are expected to support. For example, the Collection interface declares
common methods such as add() and remove() that are implemented by various
container classes.

* Abstract container classes — These are higher-level abstractions that provide
some, but not all, implementation details for a type of container. When
constructing your own container classes, it is usually easier to extend an abstract
class than it is to implement a more generalized interface. For example, if you
need to create a set-like container class, you can save some effort by extending
the AbstractSet class rather than implementing the more generalized Set interface
from scratch.

* Concrete container classes — These are completely implemented container
classes, ready for use. Each concrete class is non-abstract, extends an abstract
class, and implements at least one interface. Unless you need to write your own
container classes, you can probably select a concrete class and just use it. For
example, to create a linked list, simply construct an object of the concrete
LinkedList class.

* Other container classes — The container library provides a few other interfaces
and classes that are used in container programming, but are not otherwise related
to the library's hierarchy. For example, the Iterator interface stands alone, but it is
used extensively in Collection-based containers. I also include the BitSet class in
this group, although some other texts consider this to be a general utility class and
not part of the container library.

The entire container library of interfaces and classes is found in the java.util package.
This adds more confusion because java.util provides many other classes such as Arrays

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

228

and Calendar that have nothing to do with collection containers. Ideally, the container
library would be in its own package, but for historical reasons it remains in java.util (see
"Legacy Containers" in Chapter 18, "Utilities and Legacy Classes," for other classes in
java.util that are still supported, but replaced by the newer collection classes described
here).

Container Interfaces
Table 14-1 lists the container library's interfaces, which as mentioned, represent the
highest level of container abstractions. Some interfaces are extended from others, as
shown in the table's second column.

Table 14-1
Container Interfaces

Interface Extends

Collection none

Iterator none

ListIterator Iterator

List Collection

Map none

Set Collection

SortedMap Map

SortedSet Set

Abstract Container Classes
The library's abstract classes represent the next level of abstractions, one step up from the
container interfaces. Abstract classes implement some, but not necessarily all, methods
stipulated by an interface. For that reason, when creating your own container classes, you
may want to extend one of the library's abstract classes rather than implement a more
general interface. Table 14-2 lists the container library's abstract classes.

Table 14-2
Container Abstract Classes

Abstract Class Extends Implements

AbstractCollection none Collection

AbstractList AbstractCollection List

AbstractMap none Map

AbstractSequentialList AbstractList none

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

229

AbstractSet AbstractCollection Set

AbstractSequentialList implements the List interface indirectly by being extended from AbstractList.

Concrete Container Classes
When you need a container, you can probably construct an object of one of the concrete
classes listed in Table 14-3. Each is a ready-to-use container class that extends from one
of the library's abstract classes, and also implements at least one interface as shown in the
table.

Table 14-3
Container Concrete Classes

Concrete Class Extends Implements

ArrayList AbstractList List

HashMap AbstractMap Map

HashSet AbstractSet Set

LinkedList AbstractSequentialList List

TreeMap AbstractMap SortedMap

TreeSet AbstractSet SortedSet

WeakHashMap AbstractMap Map

Except for WeakHashMap, all concrete classes in the table also implement the Cloneable and
java.io.Serializable interfaces.

Tip

When creating your own container classes based on one of the library's
abstract classes, a good place to begin is by examining the source code
file for one of the concrete classes in Table 14-3. This will provide useful
guidelines for extending the abstract class and implementing interface
methods. See instructions in Chapter 3, "Getting Started with Java 2," for
getting and installing Java's source code files.

Other Container Classes
Table 14-4 lists two other classes in the container library that are used in container
programming, but are not part of the interface and class hierarchy. As mentioned, I
include the BitSet class as a member of the container library, but some other texts refer to
it as a utility class. Both classes in the table are concrete implementations, ready to use.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

230

Table 14-4
Other Container Classes

Class Implements

BitSet Cloneable, java.io.Serializable

Collections none

Note

Don't confuse the Collections (plural) class with the Collection (singular)
interface. The Collections class provides utility methods such as sort() and
binarySearch() to which you can pass container objects. The Collections
class cannot be instantiated as an object — all of its public methods are
static and are called in relation to the class name.

Interface and Class Diagrams
Because of the interrelationships among the container library's interfaces and classes, it's
important to know which items descend from which others. This way, you can consult
Java's sources and documentation for all of the methods available to a particular container.
Following, then, are several figures that illustrate the relationships among the container
library's interfaces and classes listed in the preceding sections.

Figure 14-1 shows a small legend for reference. In class diagrams, a single-line arrow
shows that B extends A, which might be an interface or a class. A double-line arrow
shows that B implements interface A. Note carefully the direction of the arrow — just
because an interface or class appears physically higher in a diagram does not indicate its
place in the hierarchy.

Insert fg1401.jpg

Figure 14-1
Container diagram legend

Figure 14-2, the most extensive of the container diagrams in this chapter, shows the
interfaces and classes that descend from the Collection interface. Circled classes are
concrete, ready-to-use implementations. Classes marked with an asterisk (all the concrete
ones in this case) implement the two interfaces Cloneable and java.io.Serializable, as well
as those shown in the diagram.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

231

Insert fg1402.jpg

Figure 14-2
Collection interfaces and classes

From Figure 14-2, you can quickly tell that ArrayList (circled near the right side)
implements the List interface (double-line arrow) and extends AbstractList (single-line
arrow). Arrows always point toward a superclass or superinterface.

Notice also that Collection stands at the top of all other interfaces and classes. Two other
interfaces, Set and List, extend Collection. Except for AbstractCollection, all other
interfaces and classes descend from Set and List. This makes better sense when you
realize that the words "set" and "list" are used in the most general way. A set is any
unique collection of objects, not necessarily a mathematical set. A list is any group of
objects stored or linked together in some way. A list could be a linked list data structure,
but it might also be an array of objects.

Note

Not shown in Figure 14-2 is the Vector class, which you may find while
browsing the java.util package. Although Vector extends AbstractList and
implements List, the Vector and ArrayList classes are operationally the
same. However, Vector methods are synchronized and can be used in
threaded code; ArrayList is not thread-safe. Vector is one of Java's legacy
containers (see that section in Chapter 18). New programs should use
ArrayList in place of Vector.

Figure 14-3 shows the relationships of what you might consider to be the "other half" of
the container library's interfaces and classes. All of the classes and one interface in this
diagram are based on the Map interface.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

232

Insert fg1403.jpg

Figure 14-3
Map interfaces and classes

A Map is sometimes called an association because it maps keys to values. A SortedMap's
values are maintained in key order. Most such containers are constructed from the
concrete HashMap class. This creates a highly efficient storage device that uses hash
values to search rapidly for keys, and to make quick insertions and deletions. If you need
a sorted map, use the TreeMap class.

The WeakHashMap class provides a kind of caching ability in which objects can be
inserted into a container and garbage collected. For example, a large number of picture
objects or, perhaps, Web pages might be stored as weak references in a WeakHashMap.
As such, they are subject to garbage collection provided the container's references to
them are unique. By definition, weak references cannot be copied or preserved, and
therefore WeakHashMap does not implement the Cloneable and java.io.Serializable
interfaces.

Finally in this section, Figure 14-4 illustrates the relationships among Iterator interfaces
and the container library's miscellaneous classes. Iterator objects are used to traverse
containers. ListIterator objects are used with list-based container classes. The Collections
and BitSet classes stand alone, and they are not related to any other interfaces or classes
in the library.

Insert fg1404.jpg

Figure 14-4
Iterator interfaces and other classes

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

233

The Collection Interface
All container classes implement one of two interfaces, Collection and Map (see Figures
14-2 and 14-3 in the preceding section). Listing 14-1, Collection.txt, shows the method
declarations in the Collection interface. Chapter 17, "Map Collections," introduces the
Map interface and related classes.

Listing 14-1
Collection.txt
001: // Collection interface methods
002: int size();
003: boolean isEmpty();
004: boolean contains(Object o);
005: Iterator iterator();
006: Object[] toArray();
007: Object[] toArray(Object a[]);
008: boolean add(Object o);
009: boolean remove(Object o);
010: boolean containsAll(Collection c);
011: boolean addAll(Collection c);
012: boolean removeAll(Collection c);
013: boolean retainAll(Collection c);
014: void clear();
015: boolean equals(Object o);
016: int hashCode();

Most Collection methods have obvious purposes (listings in other chapters in this part
demonstrate many of them). For instance, as you probably realize without my help, the
isEmpty() method returns true if the container has no objects. But other methods might
not be so obvious. The iterator() method returns an Iterator object — see Chapter 15,
"List Collections," for how to use one.

Two overloaded toArray() methods convert a container to an array of Object. The non-
parameterized toArray() at line 006 always creates a new array. The second method lets
you pass an existing array as an argument. If the container can be inserted into your array,
it is used and returned; otherwise, a new array is created. The second method is more
memory-efficient because it lets you reuse the same array for multiple array-conversion
operations. Converting a container to an array does not clone the contained objects.
References in the array refer to the original objects so, if you change an object's value in
an array, the original container object also changes.

The add() and remove() methods provide the most basic ways to add and remove objects
in a container. Concrete classes such as ArrayList and HashMap provide other techniques,
as I discuss at the appropriate times.

The addAll() method adds all of another container's objects to this one in the same order
as specified by the argument container's iterator. The removeAll() method removes all
methods in this container equal to the ones in the argument passed to the method. The

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

234

retainAll() method keeps all objects in this container that are the same as those in the
container passed as an argument. Method clear() removes all objects from a container.

Two methods are inherited from Object, which provides default native implementations.
Method equals() by default is true if this container equals the object argument (just the
container reference, not its contents). However, certain classes such as AbstractSet
override this method to return true only if the two containers are both of the same type,
the same size, and have the same contents. If you are creating your own container classes,
whether and how to implement equals() are important considerations. Method hashCode()
returns a hash value for the container, enabling hashed containers to store other
containers. This method also has a default implementation provided via Object, but you
may override it to create a unique hash value for your objects' classes. See "Hash Tables"
in Chapter 16, "Set Collections," for more information on the hashCode() method.

Tip

For the full story on what a container offers, remember to examine its
concrete class, the abstract class that it extends, and any interfaces that it
implements.

Containers in Action
Now let's take a look at some simple but illustrative examples of a container in action.
You'll then be ready to tackle each container class described in the coming chapters.

Note

Containers are not synchronized for use in multi-threaded code. For
instructions on how to create synchronized containers, and related issues,
see Chapter 19, "Threaded Code."

Creating a Container
Creating a container object is easy. Just import the container class you want, create the
object using new, and then call methods to insert and retrieve data objects. Listing 14-2,
ContainerDemo.java, imports the ArrayList class and uses it to construct a container of
string objects.

Listing 14-2
ContainerDemo.java
001: import java.util.ArrayList;
002:
003: class ContainerDemo {
004: public static void main(String args[]) {
005: ArrayList myList = new ArrayList(25);
006: myList.add(new String("One"));
007: myList.add(new String("Two"));
008: myList.add("Buckle");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

235

009: String s = "My shoe";
010: myList.add(s);
011: System.out.println("There are " +
012: myList.size() + " strings in myList");
013: for (int i = 0; i < myList.size(); i++)
014: System.out.println(myList.get(i));
015: }
016: }

Line 005 constructs the container. In this case, the container's initial size is set to 25
objects. To construct a default container, omit the size argument:

ArrayList myList = new ArrayList();

All container classes have one or more similar constructors for creating containers in
different ways. When using the default constructor with no arguments, the default size of
an ArrayList container is 10 objects, but this number is not guaranteed. Either way, the
container expands as necessary, and as memory allows, to accommodate more objects.
Not all container constructors support an initial size argument — for example, the
LinkedList class provides no means to reserve room for objects because, by nature, a
linked list data structure expands and shrinks for each insertion and removal operation.

Using a Container
The ContainerDemo.java program in Listing 14-2 shows three typical ways to add
objects to a list. The following statement, for example, uses new to construct a String
object and add it to myList:

myList.add(new String("One"));

String could be an object of any class. The container is not restricted to holding objects of
any particular kind — in fact, the same container can hold objects of different types.
However, some operations such as sorting and searching might require those objects to be
comparable, or a ClassCastException is thrown. So, extra care is called for when storing
different objects in the same container.

For string containers, you can also add literal values using a statement such as

myList.add("Buckle");

Finally, you can construct an object and pass it to add(). This is probably the most
common way to add new objects to a container:

String s = "My shoe";
myList.add(s);

Call size() as in the demonstration program to find out how many objects the container
holds. Call get() to retrieve an object at a specified index. Because get() returns Object,
you often have to use a type-cast expression to tell the compiler what type of object is
retrieved:

String s = (String)myList.get(2);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

236

One way to avoid having to use a type-cast expression is to declare an Object variable.
Because every class extends Object, any object reference can be assigned to an Object
variable. For example, the program could execute this statement:

Object obj = myList.get(1);

The obj object could then be passed to any method that declares an Object parameter, or
it could be used in some other general way.

Tip

Call the Object class's toString() method for any object to get its string
representation. Override this method in your own classes to provide string
representations of your data objects.

Container Exceptions
Container interfaces, abstract classes, and concrete classes are written to throw various
unchecked exceptions. The following is not a complete list of all exceptions you might
receive when using containers. You might receive other types thrown by methods in
classes such as String, but the following are specifically documented in Java's container
class library:

* ArrayStoreException — Thrown by a toArray() conversion method if a specified
array's type is not a supertype of the classes of all objects in a container.

* ClassCastException — Thrown by various methods if two objects are
incompatible for a specified operation such as a comparison during a sorting
operation.

* IllegalArgumentException — Thrown by various methods to indicate a problem
with arguments passed to the methods — for example, two index values in reverse
order.

* IndexOutOfBoundsException — Thrown by various methods to indicate an index
value is out of bounds for the container's size.

* UnsupportedOperationException — Thrown by various methods to indicate that,
despite the method's presence in an implemented interface, the container class
does not support that method. Many methods in the library's abstract classes
intentionally throw this exception so that the subclass can safely choose not to
implement selected methods.

Note

The exceptions listed here are not used exclusively by container classes.
Other Java classes may throw these same types of exceptions.

The last exception, UnsupportedOperationException, is a safety device that helps ensure
the proper use of a container class. For example, if you create your own container from

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

237

scratch, you might choose not to implement an inappropriate interface method — for
example, inserting an object into the middle of a stack. Your abstract class simply throws
the exception for all unneeded methods specified in the interface. The concrete class can
then implement only the methods it needs.

All of the exceptions listed here are unchecked, meaning you do not have to call methods
in try-catch blocks, nor do you have to specify that your own methods throw them. If you
receive one of these exceptions, it should be considered a programming error to be fixed
in the source code so the problem never occurs in the first place.

Summary
* Java's collection container class library provides a well-organized set of interfaces,

abstract classes, and concrete classes from which you can construct containers for
storing any kinds of objects.

* All containers are based on the Collection and Map interfaces. Abstract classes
implement some, but not all, methods specified in an interface. Concrete classes
implement one or more interfaces, and extend an abstract class.

* Most of the time, you can simply choose a concrete container class and use it as
supplied. You may, however, create your own container classes. In that case, it is
usually easier to extend an abstract class than it is to implement an interface from
scratch.

* This chapter lists the container class library in table and diagram forms. Use the
tables to understand the library's contents. Use the diagrams to find the
relationships among the interfaces, abstract classes, and concrete classes.

* Using a concrete container class is easy. Just select a class such as ArrayList and
use new to construct the container object. You can then call Collectio n methods
such as add() and remove().

* You may store any type of object in a container. You may also store objects of
different types in the same container, but you might receive a ClassCastException
error for certain operations unless the objects are mutually comparable.

* Container class methods throw unchecked exceptions for a variety of errors such
as calling an unsupported method, or passing an out of bounds index value to a
container method. These exceptions should be considered programming errors to
be fixed in the source code so that the problem never occurs in the first place.

Chapter 15 List Collections
The diagrams in Chapter 14, "Introducing Collections," reveal that all collection
containers stem from one of three interfaces — List, Set, and Map. Chapters 16 and 17

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

238

explain Set and Map collections. This chapter explores the List interface and its
descendants.

Note

The word "list" here is used in a very general way to describe any
container that might contain a list of items, as opposed to, say, an
associative set. Thus a "list" might be an array (also called a vector), but it
might also be a linked list.

In This Chapter

* Implementing the List interface

* ArrayList containers

* LinkedList containers

* Searching List-based containers

* Building custom List containers

The List Interface
The List interface inherits and re-declares all methods from Collection (refer back to
Listing 14-1). All interfaces and classes that descend from List include Collection's
members plus those shown here in Listing 15-1, List.txt.

Listing 15-1
List.txt
001: // List interface methods not also in Collection
002: boolean addAll(int index, Collection c);
003: Object get(int index);
004: Object set(int index, Object element);
005: void add(int index, Object element);
006: Object remove(int index);
007: int indexOf(Object o);
008: int lastIndexOf(Object o);
009: ListIterator listIterator();
010: ListIterator listIterator(int index);
011: List subList(int fromIndex, int toIndex);

The List interface stipulates methods that are appropriate for list-like containers. Method
addAll() overloads Collection addAll(), adding an integer index parameter. The index
represents the insertion point at which the first object is added. Methods get() and set()
retrieve and replace an object in a container. Method remove(), which overloads
Collection remove(), removes an object at the specified index.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

239

Two index-of methods find the index of a specified object in a container. The methods
return –1 if no such object is found. The indexOf() method at line 007 finds the first
occurrence of the specified object; lastIndexOf() finds the last one (the one having the
highest index in the case of any duplicates). There are two listIterator() methods
discussed in this chapter (see "Using the Iterator Interface" and "Using the ListIterator
Interface").

Finally in List is method subList(), which returns a List container for the objects located
at and between the specified two index values. This and similar methods that return full
or partial containers are called view methods. They provide a new view into a container
— they do not clone the container's contents. Changes made to an object in a view are
made also to the original object in the container, sometimes referred to as the backing
container.

The ArrayList Class
The concrete ArrayList class implements the List interface, and extends AbstractList,
which provides implementations of several methods from Collection and List. Listing 15-
2, ArrayList.txt, shows the public methods that the class itself implements. Keep in mind
that listings such as ArrayList.txt show only constructors and methods not inherited from
the class's underlying abstract class and interface.

Listing 15-2
ArrayList.txt
001: // ArrayList methods
002: public ArrayList();
003: public ArrayList(int initialCapacity);
004: public ArrayList(Collection c);
005: public void trimToSize();
006: public void ensureCapacity(int minCapacity);
007: public Object clone();

Tip

To find all supported methods for a concrete container class, you must
also examine the class's interface and underlying abstract class. Refer
back to Figures 14-2 and 14-3 to find the names of related interfaces and
classes.

All container classes are required to provide at least two constructors — a default one
with no parameters and one that takes a Collection object as an argument. ArrayList
provides an additional constructor, making three ways to construct this type of container
(see lines 002-004). You saw the first two constructors in ContainerDemo.java (Listing
14-2) and discussio n. The third constructor lets you pass any other Collection-based
container as an argument. The constructor is useful for converting one type of container
to another. For example, if oldList is a LinkedList container, you can convert it to an
ArrayList container with a simple statement:

ArrayList newList = new ArrayList(oldList);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

240

Call trimToSize() to reduce an ArrayList container's capacity to the exact number of
objects needed to hold those in the container. Don't do this frivolously. After a call to
trimToSize(), the next addition to the container will cause it to expand, which probably
means two copies of the container existing at least temporarily in memory. Call
ensureCapacity() to expand the container to a certain size. This is good to do when you
know the program will add numerous objects, which might cause periodic expansions.
Increasing the container's capacity helps ensure that it is expanded infrequently, or at best,
only once.

The LinkedList Class
Listing 15-3 shows another List-based container, LinkedList. This concrete class
implements the List interface (Listing 15-1), and extends the AbstractSequentialList
abstract class. Because List extends Collection, the LinkedList class also provides
implementations of Collection methods. Shown here are only the constructors and public
methods that LinkedList directly implements.

Listing 15-3
LinkedList.txt
001: // LinkedList methods
002: public LinkedList();
003: public LinkedList(Collection c);
004: public Object getFirst();
005: public Object getLast();
006: public Object removeFirst();
007: public Object removeLast();
008: public void addFirst(Object o);
009: public void addLast(Object o);

In this class, there are two constructors — the minimum required for Collection-based
containers. There is no way to preset a LinkedList's size. That would be senseless anyway
because a linked-list data structure is composed entirely of objects linked together by
memory references. Create a LinkedList container with a statement such as

LinkedList myList = new LinkedList();

Or, you can pass an existing Collection container as an argument. For example, the
following statement converts a container myArray of type ArrayList to a LinkedList:

LinkedList myList = new LinkedList(myArray);

The LinkedList class provides three pairs of related methods for retrieving, removing,
and adding objects to the container. Call getFirst() to return the object at the head of the
list; call getLast() for the last object. These methods are fast because the container
maintains references to its first and last objects. Likewise, removeFirst() and removeLast()
quickly remove the first and last objects in the list respectively. When removing an object,
if you don't save its reference, it may be subject to garbage collection if no other
references to the object exist. These methods throw NoSuchElementException if the list
is empty, so you might want to use code such as

if (!myList.isEmpty())

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

241

 myList.removeLast();

The isEmpty() method is inherited from Collection along with others. To erase a list
entirely, call the inherited clear() method:

myList.clear();

To add new objects, call addFirst() and addLast(). As their names suggest, they add new
objects to the head or tail of a LinkedList container. If your object class is named
YourClass, use statements such as the following to insert new objects:

LinkedList yourList = new LinkedList();
yourList.addFirst(new YourClass());
YourClass obj = new YourClass();
yourList.addLast(obj);

In addition to the methods shown in Listing 15-3, LinkedList supports others fo r finding,
removing, and adding objects. For example, you can call the List interface get() method
to retrieve an indexed object from the container:

YourClass obj = (YourClass)yourList.get(2):

Be careful with code like that. If the index is out of bounds, the container throws
IndexOutOfBoundsException. Also, because get() returns Object, a type-cast expression
is usually necessary. However, the expression throws ClassCastException if the returned
object is not of the specified class or subclass. To find an object's index in a LinkedList,
call indexOf() like this:

int index = yourList.indexOf(obj);

It might seem odd to use integer indexes with LinkedList containers — classic linked lists
rarely provide similar random-access capabilities. However, the LinkedList class
implements both the List and Collection interfaces, and it therefore provides alternate
ways to access objects. You might also find it odd that LinkedList provides no methods
for traversing listed objects — but actually, it does, in the form of a ListIterator object as
explained later in this chapter under "Using LinkedList Containers."

Tip

Linked lists are particularly good for containers that need to conserve
memory. Only the objects in the container occupy space — there are no
empty spots in a linked list. Search operations such as contains(),
however, are slower than when performed on a hashed container or a tree
structure because the list has to be traversed sequentially. If you need
speedy searches, an ArrayList or TreeSet container might be a better
choice than a LinkedList.

Using ArrayList Containers
You saw a simple example of an ArrayList container in Chapter 14. That program
(Listing 14-2, ContainerDemo.java) stored String objects in an ArrayList. More
commonly you will need to store collections of objects of your own classes. To

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

242

demonstrate some of the required techniques and associated problems you might run into,
Listing 15-4, Chart.java, declares a Chart class for creating a database of objects to be
stored in containers.

Listing 15-4
ArrayListDemo/Chart.java
001: public class Chart implements Comparable {
002: public int number;
003: public String name;
004: public long scale;
005: public Chart(int number, String name, long scale) {
006: this.number = number;
007: this.name = name;
008: this.scale = scale;
009: }
010: public int compareTo(Object o) {
011: Chart other = (Chart)o;
012: return name.compareTo(other.name);
013: }
014: public String toString() {
015: return number + " " + name + " 1:" + scale;
016: }
017: }

Among other information, nautical charts are identified by number and name, and they
list their scale as a ratio — for example, 1:10,000. This makes a good example of a class
that serves as a kind of database record. However, to keep the Chart class simple, I
declared its three data members to be public (lines 002-004). These would normally be
made private, and the class would provide access methods to read and write their values.
The class constructor (lines 005-009) initializes a Chart object using instances of the
three data types.

The Chart class implements Comparable and provides an implementation for that
interface's compareTo() method (lines 010-013). Most objects in containers should
similarly be comparable so that you can search and sort them. When comparing string
data, it is easiest just to pass on the result of that data's class compareTo() method. As
shown here, line 012 calls the String class's compareTo() method to compare the name
fields in two Chart objects.

Tip

A more fully implemented class might also override Object.equals(), and it
might implement Cloneable and provide a clone() method. These methods
are optional, however, and you don't need to provide them for use with
containers.

The class also overrides toString() (lines 014-0170), which returns a string representation
of a Chart object's instance variables. It is almost always a good idea to override toString()
unless the default Object implementation is adequate for your needs. By default, an

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

243

object's string representation equals its class name and memory reference — not the kind
of information you'd want your program's users to see.

Listing 15-5, ArrayListDemo.java, creates an ArrayList container and inserts several
objects of the Chart class.

Listing 15-5
ArrayListDemo.java
001: import java.util.List;
002: import java.util.ArrayList;
003: import java.util.Collections; // plural!
004: import Chart;
005:
006: class ArrayListDemo {
007:
008: // Display a List of objects
009: public static void showContainer(List c) {
010: for (int i = 0; i < c.size(); i++)
011: System.out.println(c.get(i).toString());
012: }
013:
014: public static void main(String args[]) {
015: // Construct the container
016: ArrayList charts = new ArrayList();
017:
018: // Insert some Data objects
019: charts.add(new Chart(11013, "Morehead City Hrbr ", 12500));
020: charts.add(new Chart(11552, "Neuse River ", 40000));
021: charts.add(new Chart(11428, "Dry Tortugas ", 30000));
022: charts.add(new Chart(11420, "Havana to Tampa Bay", 470940));
023: charts.add(new Chart(25641, "Virgin Islands ", 100000));
024: charts.add(new Chart(26341, "Bermuda Islands ", 50000));
025:
026: // Sort and display container
027: Collections.sort(charts);
028: showContainer(charts);
029: }
030: }

The demonstration program begins by importing several interfaces and classes, including
the Chart class (lines 001-004). Method showContainer() at lines 008-012 shows the
object-oriented way to access objects in a List container. Notice that ShowContainer()'s
parameter is an object of the List interface, not the ArrayList class. As a result, the
method can operate on any container object of a class that implements List. However, the
method assumes that the objects in the container provide a toString() method, as our
Chart class does.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

244

Tip

When declaring method parameters, it is usually best to specify the most
general type possible. For example, instead of requiring an ArrayList
object to be passed to a method such as ShowContainer(), specifying an
object of the more general type List means that any object of a class that
implements List can be passed to the method as an argument. This also
simplifies replacing a program's container with another type — in this case,
for example, any collection class that implements List.

The sample program constructs an ArrayList container at line 016 of a default size. Lines
019-024 show how to construct and add Chart objects to the container by calling the
Collection class's add() method. Although this method returns a boolean true result if
successful, the sample program throws out the returned values. However, in your own
code, to confirm that an insertion worked, you can check that add() returns true.

Line 027 sorts the container by calling the sort() method in class Collections. Notice that
this class name is plural — Collections is a utility class that provides various common
methods such as sort(). (I introduce other Collections methods in the next chapter, and
also in Chapter 18, "Utilities and Legacy Classes.") Objects are sorted by virtue of the
Chart.compareTo() method, which compares only name fields. If this method is not
provided, and if Chart does not implement Comparable, a ClassCastException is thrown.

Tip

If you receive a ClassCastException, especially for any container
operations that sort or search objects, your class probably needs to
implement a required interface such as Cloneable or Comparable and
provide implementations for one or more interface methods.

After sorting, Line 028 passes the charts container to ShowContainer(), which displays
the results on screen:

26341 Bermuda Islands 1:50000
11428 Dry Tortugas 1:30000
11420 Havana to Tampa Bay 1:470940
11013 Morehead City Hrbr 1:12500
11552 Neuse River 1:40000
25641 Virgin Islands 1:100000

Using Comparators and ArrayList
As mentioned earlier, the objects in a container can be compared, and therefore sorted, if
the objects' class implements the Comparable interface and provides a compareTo()
method. But what if you want to sort the objects on other fields — in Chart.scale order,
for example? In that case, a good solution is to use a Comparator object to perform the
comparison. This section explains how to write a Comparator object for the Chart class
and use it in an ArrayList container, but the information applies generally to other object
types and containers.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

245

Comparator is an interface in the java.util package. One good way to implement this
interface is to create a private, nested class (also called an inner class) that belongs
strictly to your data object's outer class. In addition, the outer class provides factory
methods that construct various Comparator objects for use in other code such as the
Collections class sort() method, which lets you pass it a Comparator object to perform
object comparisons.

Listing 15-6 shows a new version of the Chart class that demonstrates how to create
Comparator objects using a private inner class. To save room here, I cut out lines that
duplicate those in Listing 15-4 — if you are viewing the listing on screen, you see the
complete text. The file is in the c15/ComparatorDemo directory on the CD-ROM.

Listing 15-6
ComparatorDemo/Chart.java
001: import java.util.Comparator;
002:
003: public class Chart implements Comparable {
004: // Constants
005: final static int BYNUMBER = 1;
006: final static int BYNAME = 2;
007: final static int BYSCALE = 3;
...
025: // Comparator "factory" methods
026: public static final Comparator byNumber() {
027: return new ChartComparator(BYNUMBER);
028: }
029: public static final Comparator byName() {
030: return new ChartComparator(BYNAME);
031: }
032: public static final Comparator byScale() {
033: return new ChartComparator(BYSCALE);
034: }
035:
036: // Private inner Comparator class
037: private static class ChartComparator implements Comparator {
038:
039: private int compType; // Type of comparison to perform
040:
041: // Constructor saves comparison type identifier
042: ChartComparator(int compType) {
043: this.compType = compType; // BYNUMBER, BYNAME, or BYSCALE
044: }
045:
046: // Implement the Comparator interface's method
047: public int compare(Object o1, Object o2) {
048: Chart c1 = (Chart)o1; // Type cast objects to Charts
049: Chart c2 = (Chart)o2;
050: switch (compType) {
051: case BYNUMBER:
052: return (c1.number < c2.number ? –1 :

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

246

053: (c1.number == c2.number ? 0 : 1));
054: case BYNAME:
055: return c1.name.compareTo(c2.name);
056: case BYSCALE:
057: return (c1.scale < c2.scale ? –1 :
058: (c1.scale == c2.scale ? 0 : 1));
059: default:
060: return 0; // Satisfy compiler; can't happen
061: }
062: }
063: } // private inner class
064: } // Chart class

The new Chart class imports java.util.Comparator (line 001), but the class itself does not
implement this interface. Instead, Chart declares an inner class beginning at line 037. The
class, which I named ChartComparator (it could have any name) is made private and
static to the Chart class. This has two effects. One, because it is private, the inner class is
available only to Chart methods. Two, because it is static, references to the inner class are
made in reference to the Chart class, not to any specific Chart object. This provides other
code access to the inner class's method for all Chart objects, not just for one specific
instance.

ChartComparator implements the Comparator interface (see line 037), which stipulates
two methods: compare() and equals(). Most of the time, you can implement only
compare(). You do not have to provide an equals() method because Object provides a
default implementation. In this example, lines 047-061 implement compare(), which
receives two Object references, o1 and o2, to be compared. The method returns –1 if o1 <
o2, 0 if o1 = o2, and +1 if o1 > o2.

Note

The default Object.equals() compares only object references, not object
contents. To do that, your class should override equals() and provide a
suitable implementation.

In writing a Comparable class, the meaning of less, greater, and equals is up to you. Here,
I use an integer value, compType, to indicate which type of comparison to make. For
clarity, I also created three constants, BYNUMBER, BYNAME, and BYSCALE (see
lines 005-007). In the compare() method, the first step is to cast the Object references to
the real type of object being compared, namely a Chart (see lines 048-049). A switch
statement then performs one of three comparisons based on compType. The default value
at lines 059-060 merely satisfies the compiler's requirement that all methods return values
of their declared types (except void). The default statement is never executed.

Three factory methods at lines 025-034, byNumber(), byName(), and byScale(), construct
Comparator objects of each of the three types. These methods return type Comparator,
not ChartComparator, which is private to the class and cannot be referred to by outsiders.
Only the Chart class "knows" the actual type of the Comparator object. As far as Chart

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

247

users are concerned, the factory methods return objects that can be passed to any other
method that declares a Comparator object as a parameter.

Listing 15-7, ComparatorDemo.java, shows how to use the new Chart class and its
Comparator factory methods to sort an ArrayList container three different ways. Again, I
cut out a few lines that duplicate those in the similar ArrayList.java demonstration
(Listing 15-5).

Listing 15-7
ComparatorDemo.java
...
006: class ComparatorDemo {
...
026: // Sort and display container three ways:
027: Collections.sort(charts, Chart.byNumber());
028: System.out.println("\nBy number:");
029: showContainer(charts);
030:
031: Collections.sort(charts, Chart.byName());
032: System.out.println("\nBy name:");
033: showContainer(charts);
034:
035: Collections.sort(charts, Chart.byScale());
036: System.out.println("\nBy scale:");
037: showContainer(charts);
038: }
039: }

Three sets of three statements sort and display the container's objects. In each case, the
sort() method in the Collections class is passed the charts container and a Comparator
object, returned by calling one of the Chart class's factory methods. The sort() method
uses the Comparator object to compare Chart objects, and in that way, to sort them
according to whatever variables or other criteria are needed.

Tip

To use a Comparator object to sort in reverse order, you can program its
compare() method for objects A and B to return –1 if A > B, 0 if A = B, and
+1 if A < B. But also see the discussion of the Collections class for another
way to create a reverse Comparator in Chapter 18.

Using the Iterator Interface
When you need to access all objects in a Collection, it is often convenient to use an
iterator object. The Iterator interface is used by containers to provide iterator objects that
"know" how to traverse the container's data structure. The result is a more general way to
access objects than by calling a container method such as List.get(). The technique works
for any container of a class that extends Collection. However, the order in which the
objects are delivered is not defined unless the container itself imposes an ordering on

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

248

them (for example, one that implements the SortedSet interface, described in the next
chapter). Listing 15-8 shows the Iterator interface's methods.

Listing 15-8
Iterator.txt
001: // Iterator interface methods
002: boolean hasNext();
003: Object next();
004: void remove();

Although it might seem to be a lightweight among heavier interfaces, the Iterator
interface's three methods provide well-defined access and removal rules for objects in
containers. Method hasNext() returns true if there is another object in the container not
yet accessed. Method next() returns the next object in the container. Method remove()
deletes the object most recently returned by next(). Although these methods may seem
intuitively simple, they must be used correctly to prevent an exception. When using
Iterator objects, it's important to obey these rules:

* If there is no next object in the container, next() throws NoSuchElementException.
To prevent that exception, always call hasNext() before calling next().

* The remove() method throws UnsupportedOperationException if removal via an
Iterator object is unsupported by the implementing class. The only remedy is to
not call remove() for this container's Iterator.

* The remove() method throws IllegalStateException if called improperly —
typically by failing to first call next(). To prevent this exception, always call
remove() only after calling hasNext() and next(), in that order.

* An Iterator object is not guaranteed to remain stable if the container is modified in
any way except by calling the Iterator's remove() method.

Note

In older Java collection classes, the Enumeration interface resembled
Iterator. New code should always use Iterator objects. See Chapter 18 for
more information on Enumeration and other "legacy classes."

Another demonstration of the Chart class shows how to use Iterator objects to access a
container's contents, and also to remove objects. The important difference between this
demonstration and the others in this chapter is that the techniques work the same for all
container classes based on the Collection interface. (Using an Iterator with Map -based
containers also works, but requires creating a Set view of the container, as explained in
Chapter 17.)

Listing 15-9, IteratorDemo.java, shows how to use an Iterator with an ArrayList
container. As with some other listings in this chapter, I deleted duplicate lines to show
only the new code added to the program.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

249

Listing 15-9
IteratorDemo.java
001: import java.util.Iterator;
002: import java.util.Collection;
003: import java.util.ArrayList;
004: import Chart;
005:
006: class IteratorDemo {
007:
008: // Display a Collection using an Iterator
009: public static void showContainer(Collection c) {
010: Chart achart;
011: Iterator I = c.iterator(); // Get Iterator for Collection
012: while (I.hasNext()) { // Always call hasNext()
013: achart = (Chart)I.next(); // before calling next()
014: System.out.println(achart.toString());
015: }
016: }
...
033: // Erase first object
034: Iterator I = charts.iterator(); // Get an Iterator object
035: if (I.hasNext()) { // Always call hasNext() and
036: Chart c = (Chart)I.next(); // next() before
037: I.remove(); // calling remove()
038: }
039: System.out.println("\nAfter removing first object");
040: showContainer(charts);
041:
042: // Use Iterator to remove all objects
043: I = charts.iterator(); // Get a fresh Iterator
044: while (I.hasNext()) {
045: I.next(); // Don't need to save returned object
046: I.remove(); // Removes object last returned by next()
047: }
048: System.out.println("\nAfter removing all objects");
049: System.out.println("Container size = " + charts.size());
050: }
051: }

The new program imports the Iterator and Collection interfaces, along with ArrayList and
Chart (lines 001-004). (A copy of the Chart.java file is in the c15/IteratorDemo directory
for convenience.) Lines 008-016 implement the ShowContainer() method using an
Iterator. It is useful to compare the listing's new method with the one from earlier
demonstrations, repeated here:

public static void showContainer(List c) {
 for (int i = 0; i < c.size(); i++)
 System.out.println(c.get(i).toString());
}

Of key importance is the change from a List to a Collection parameter (see line 009).
This makes the method more general because it can now work with any Collection

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

250

container, not only those that implement List. Line 010 defines a Chart object, named
achart, for use in accessing each container object. The next statement creates the Iterator:

Iterator I = c.iterator();

Because Collection declares the iterator() method, the statement can call it for any
container class (except, as mentioned, for Map containers).

Tip

The Iterator interface is capitalized. The iterator() method in Collection is
spelled in all lowercase.

After getting an Iterator object, simply named I in this case, use it as shown at lines 012-
015 to access all objects in a container. A generic form of the same while loop looks
something like this:

while (I.hasNext()) {
 YourClass obj = (YourClass)I.next();
 // Do something with obj
}

The code satisfies the rule that hasNext() must be called before every call to next(). The
type-cast expression is usually needed because I.next() returns Object. Cast that to your
own class, and then do whatever you want with the resulting object. If the object is not of
the specified class, or a subclass, the cast throws the runtime error ClassCastException.

To remove an object from a container, use statements such as these (similar to those in
the demonstration at lines 035-038):

if (I.hasNext()) {
 YourClass obj = (YourClass)I.next();
 I.remove();
}

If all you want to do is remove an object, you don't need to save its reference. In that case,
the preceding code simplifies to

if (I.hasNext()) {
 I.next();
 I.remove();
}

The statement order ensures that remove() does not throw an exception. However, it
might still throw UnsupportedOperationException if the container does not support
removal using an Iterator. Similar code at lines 044-047 shows how to use an Iterator to
safely remove all objects from any Collection container, but you could more easily call
the container's clear() method.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

251

Using LinkedList Containers
Like ArrayList, the LinkedList class (refer back to Listing 15-3) is based on the
Collection interface, and many of the same techniques already discussed work the same
for LinkedList containers. However, unlike an ArrayList, a LinkedList has no initial
capacity. A LinkedList grows for each object inserted, and it shrinks for each one
removed.

In a LinkedList container, objects are linked together by references. This provides for fast
insertions and removals. With an ArrayList, those same operations might require shifting
objects up and down, a time-costly maneuver for objects in the middle of a big container.
The general rule is that, if you need fast insertions and removals, use a LinkedList. But if
you need fast random access to objects, use an ArrayList.

Tip

For very large containers, insertions in a LinkedList might avoid a wasteful
garbage collection that may be needed to acquire enough memory to
expand an ArrayList.

To demonstrate how to create and use a LinkedList container, Listing 15-10,
LinkedListDemo.java, shows another version of the chart display program. (For
convenience, a copy of the Chart.java listing is in the c15/LinkedListDemo directory.)

Listing 15-10
LinkedListDemo.java
001: import java.util.List;
002: import java.util.LinkedList;
003: import java.util.ListIterator;
004: import java.util.Collections;
005: import Chart;
006:
007: class LinkedListDemo {
008:
009: static final boolean FORWARD = true;
010: static final boolean REVERSE = false;
011:
012: // Display a LinkedList using a ListIterator
013: // in forward or reverse order
014: public static void showContainer(List c, boolean forward) {
015: Chart achart;
016: if (forward) {
017: // Show in forward order
018: ListIterator I = c.listIterator();
019: while (I.hasNext()) {
020: achart = (Chart)I.next();
021: System.out.println(achart.toString());
022: }
023: } else {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

252

024: // Show in reverse order
025: ListIterator I = c.listIterator(c.size());
026: while (I.hasPrevious()) {
027: achart = (Chart)I.previous();
028: System.out.println(achart.toString());
029: }
030: }
031: }
032:
033: public static void main(String args[]) {
034: // Construct the container
035: LinkedList charts = new LinkedList(); // Can't specify size
036: Chart achart; // For accessing the container's objects
037:
038: // Insert some Data objects
039: charts.add(new Chart(11013, "Morehead City Hrbr ", 12500));
...
046: // Sort the LinkedList container
047: Collections.sort(charts);
048:
049: // Display head and tail objects
050: System.out.println("\nHead object is:");
051: achart = (Chart)charts.getFirst();
052: System.out.println(achart.toString());
053: System.out.println("\nTail object is:");
054: achart = (Chart)charts.getLast();
055: System.out.println(achart.toString());
056:
057: // Show list in forward and reverse order
058: System.out.println("\nList in forward order");
059: showContainer(charts, FORWARD);
060: System.out.println("\nList in reverse order");
061: showContainer(charts, REVERSE);
062: }
063: }

Much of the new program resembles others in this chapter. To create a LinkedList
container, the program executes this statement at line 035:

LinkedList charts = new LinkedList();

The only significant difference here is that, unlike with an ArrayList object, there's no
reason to specify an initial size for the LinkedList container — in fact, it is not possible to
do so. The program calls add() as before to insert a few Chart objects into the container
(lines 037-044, some of which are deleted to save space). This demonstrates that, because
LinkedList is based on the Collection interface, a program can call interface methods
such as add() just as it can for other Collection containers.

The next two sections discuss a few more techniques demonstrated in the sample
program.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

253

Sorting LinkedList Containers
Listing 15-10 shows how to sort a LinkedList container. The easiest method is to simply
call the Collections (plural) class method, sort(), as shown at line 047. This works the
same as for ArrayList containers because both classes implement the List interface.

Calling sort() as shown here sorts the objects in their natural order — in this case using
the compareTo() method implemented by Chart. Alternatively, you could use
Comparator-object factory methods as demonstrated earlier in this chapter (see Listing
15-6). In terms of sorting, ArrayList and LinkedList containers operate identically.

Note

Swapping two objects in a LinkedList means adjusting four references,
since each object is linked to its next and previous objects (if any).
Swapping two objects in an ArrayList container means exchanging only
two object references. So, sorting an ArrayList may be faster than for the
same data in a LinkedList. In any event, for either container, no objects
are actually moved by sorting. Only references are moved.

Using the ListIterator Interface
For most LinkedList containers, you will probably use a ListIterator object to access the
container's contents. Although you can also call Collection and List interface methods —
the LinkedList class implements both interfaces — using a ListIterator makes it easy to
move through the container's objects in forward or reverse order. The LinkedList class
also provides methods to get and remove a list's head and tail objects. They are
particularly useful in creating containers that implement stack and queue data structures.
Listing 15-11, ListIterator.txt, shows the ListIterator interface's methods.

Listing 15-11
ListIterator.txt
001: // Inherited Iterator methods
002: boolean hasNext();
003: Object next();
004: void remove();
005: // ListIterator interface methods
006: boolean hasPrevious();
007: Object previous();
008: int nextIndex();
009: int previousIndex();
010: void set(Object o);
011: void add(Object o);

The ListIterator interface extends Iterator (see Listing 15-8), and its first three methods,
hasNext(), next(), and remove(), are simply inherited and redeclared. These methods
work the same as described earlier under "Using the Iterator Interface." In addition,
ListIterator provides two similar methods to move through objects in reverse order.
Method hasPrevious() returns true if there is a previous object. Method previous() returns

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

254

that object. As with hasNext() and next(), you must call hasPrevious() before calling
previous(), or you risk a NoSuchElementException. After calling previous(), you may
call remove() to delete the returned object.

Two integer methods, nextIndex() and previousIndex(), return the index value of the next
or previous object that would be returned by calling next() or previous(). Method
nextIndex() returns the container's size if the iterator is at the end of the list (that is, if
hasNext() would return false). Method previo usIndex() returns –1 if the iterator is at the
head of the list (if hasPrevious() would return false).

Using integer indexes might seem more appropriate for an array-like structure than for a
linked list, but the nextIndex() and previousIndex() methods pro vide handy ways to
obtain index values for passing to methods such as the List interface's remove(int index).
However, be extremely careful with this technique — any operations that change, insert,
or delete any objects in the container may invalidate the ListIterator or Iterator object.
Only the Iterator interface's remove() method, and the ListIterator interface's remove(),
set(), and add() methods, are guaranteed not to invalidate the iterator object.

Tip

After changing any objects in a container — for example, by calling a
container class's add() method — always get a fresh Iterator or ListIterator
object for traversing the container.

The demonstration program's ShowContainer() method (refer back to Listing 15-10, lines
014-031) shows how to use a ListIterator object to traverse a LinkedList container in
forward or reverse order. Moving forward is similar to using a plain Iterator object,
shown here in generic form:

ListIterator I = c.listIterator();
while (I.hasNext()) {
 obj = (YourClass)I.next();
 // Do something with obj
}

As shown on the first line, call the listIterator() method, declared by the List interface and
implemented in LinkedList, to obtain a ListIterator object. (The interface is capitalized;
the method is not.) You can then call the ListIterator's hasNext() and next() methods to
walk through all objects in the list in forward order. Unlike for plain Iterator objects,
which do not guarantee in what order objects are returned, ListIterator objects always
return the objects in the same order as they were inserted into the list.

Moving backwards through a linked list is almost the same, but for one additional
parameter passed to the listIterator() method:

ListIterator I = c.listIterator(c.size());
while (I.hasPrevious()) {
 obj = (YourClass)I.previous();
 // Do something with obj
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

255

Specify the container's size as shown on the first line to obtain a ListIterator object that
initially refers to the tail of the list. Without this parameter, the first call to hasPrevious()
would return false, and no objects would be returned.

Note

Although of little practical value, it is interesting to note that calling the
ListIterator interface's next() and previous() methods repeatedly return the
same object from a LinkedList container without throwing an exception.

Finally in the ListIterator interface are two methods that you can use to change an object
in a LinkedList container, and to add a new one (see Listing 15-11, lines 010 and 011).
Use set() to change an object's value. Use the add() method to insert a new object into a
LinkedList container. Though seemingly simple, the methods are a little tricky to use. For
best results, follow these guidelines:

* Always call next() or previous() before calling set(), or you receive an
IllegalStateException. This rule implies that you also call hasNext() or
hasPrevious() as previously mentioned.

* In calling add() or remove(), you must call next() or previous() before calling set(),
or you risk the same type of exception. Again, this implies that you also call
hasNext() or hasPrevious().

* You may call add() at any time, even for an empty list. The new object is inserted
between the object that would be returned by a call to next() and previous(), or at
the list's head or tail as appropriate.

* The add() and set() methods throw UnsupportedOperationException if the
methods are not implemented by this ListIterator object, ClassCastException if
the object is incompatible in some way, and IllegalArgumentException for any
other errors (however, I can find no evidence that this last exception is ever
thrown for a ListIterator).

Use add() to insert a new object ahead of the one that would be returned by next(), or at
the end of the list. For example, you can add the following statements to the
LinkedListDemo.java program in Listing 15-10 to add a new Chart object to the
container:
ListIterator I = charts.listIterator();
I.add(new Chart(26262, "Grand Turk Island ", 25000));
showContainer(charts, FORWARD);

Because the ListIterator is freshly created, the new object is inserted at the head of the
LinkedList. It is safe to call add() this way without first calling next() or previous(), but in
many cases, add() and set() are called in loops that search a container. For example, you
could replace an existing Chart with a new one by calling set(), but as mentioned, this
method requires careful use. First, we need a few variables:

boolean found = false;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

256

Chart c;
ListIterator I = charts.listIterator();

The ListIterator is freshly created, and so the list is ready for perusing from head to tail.
A while loop seems to be a good choice for the search:

while (!found && I.hasNext()) {
 c = (Chart)I.next();
 if (c.number == 11552) {
 I.set(new Chart(26262, "Grand Turk Island ", 25000));
 found = true; // End search
 }
}

The loop iterates while found is false and I.hasNext() returns true, indicating we haven't
yet reached the end of the list. In the loop, next() returns the next Chart object to inspect.
If its number field equals the one we want, 11552 in this example, method set() replaces
that object with a new one.

If you simply want to update an object's information, you don't have to call set(). For
instance, to change the object's name variable, you can simply write code such as the
following:

if (c.number == 11552) {
 c.name = "New chart name";
 found = true; // End search
}

Searching List Containers
One way to search a container is to use an Iterator or ListIterator as described in the
preceding section. This section discusses a few other search methods you can use with
Collection- and List-based containers.

Collection Search Methods
If you just want to know whether a Collection container contains an object, call the
contains() method, which returns true or false. For example, if obj is the object to find,
and C is any Collection-based container, this statement tests whether C contains obj:

if (C.contains(obj))
 System.out.println("Found object!");

That may seem simple enough, but there are two facts about contains() to keep in mind.
One, if obj is null, the contains() method returns true only if the container holds at least
one object reference that is null. Two, and most important, contains() relies on
Object.equals() to compare objects. Override this method in your own class to perform a
comparison of your objects' content; otherwise, equals() returns true only if two object
references are the same. In other words, if your class has a String name instance variable,
Object.equals() returns false for two objects A and B even if A.name holds the same

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

257

string as B.name. To compare name instance variables for two objects, assuming that's
your intention, the objects' class must override and provide an equals() method.

Tip

Any container may contain a null object reference, even a LinkedList. You
might insert a null reference into a container as a sentinel and use it like a
bookmark.

A related Collection interface method, containsAll(), compares two containers by calling
Collection.contains() for all of their objects. In the following statement, the method
returns true only if container A contains all the same objects as B (again, your class
probably needs to provide an equals() method to compare the objects' contents):

if (A.contains(B))
 System.out.println("The containers are equivalent");

List Search Methods
For searching containers based on the List interface (for example, instances of the classes
ArrayList and LinkedList), you can use the indexOf() and lastIndexOf() methods. These
methods perform a linear search of a List container in forward and reverse order
respectively, internally using a ListIterator object. If obj is the object to find, and C is a
List container, the following code finds the index of the first such object:

int index = C.indexOf(obj);
if (index < 0)
 System.out.println("Object not found");

The method returns –1 if the object is not found. Call lastIndexOf() to find the index of
the last matching occurrence:

int index = C.lastIndexOf(obj);
if (index >= 0)
 System.out.println("Highest index = " + index);

As with indexOf(), lastIndexOf() returns –1 if the object isn't found. The method
performs its search using a ListIterator in reverse order, and it returns the highest index of
the target object.

Tip

If the List container has duplicate objects, indexOf() finds the first such
object; lastIndexOf() finds the last one. The container does not need to be
sorted before calling these methods.

Binary Search Method
Another powerful technique for searching containers is provided by the Collections
class's binarySearch() methods. In general terms, the binary search algorithm works by
looking for an object in one half of a sorted container. If the sought object is greater than
the examined object, the next comparison is made in the next half of the container. By

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

258

continually dividing the search region this way, the object is more quickly located in
most cases than it would be by a straight sequential search of the container from one end
to the other.

Before calling binarySearch(), you must remember to sort the container in ascending
order using any of the techniques described in this chapter. There are two overloaded
versions of the method:

int binarySearch(List list, Object key);
int binarySearch(List list, Object key, Comparator c);

To the first version, pass any List-based container and the object that you want to find.
This method requires that the key object's class implements the Comparable interface and
provides a compareTo() method (for help doing that, refer to Listing 15-4,
ArrayListDemo/Chart.java). Alternatively, call the second binarySearch() method and
pass a third Comparator argument to be used in comparing the container's objects. In that
case, the key object's class does not need to implement Comparable (it may do so,
however). Instead, the class can provide a factory method that returns a Comparator
object to be used in performing the binary search (refer to Listing 15-6,
ComparatorDemo/Chart.java for an example).

Tip

If the container is not sorted, the results of calling binarySearch() are not
defined. Always sort the container before calling binarySearch()!

A typical container holds objects that you may need to search for based on various object
values. For example, in a database, you might need to perform searches for name, city,
state, and zip code information. To demonstrate how to use binarySearch() to solve this
type of problem, Listing 15-12, BinaryDemo.java, uses the Chart class from Listing 15-6.
As already explained, this class provides factory methods that return Comparator objects.
The demonstration program uses one of these methods to search a list of Chart objects by
number. The program resembles other demonstrations in this chapter — to save space, I
deleted duplicate lines (on screen you see the entire listing).

Listing 15-12
BinaryDemo.java
001: import java.util.List;
002: import java.util.Comparator;
003: import java.util.ArrayList;
004: import java.util.Collections;
005: import Chart;
006:
007: class BinaryDemo {
...
015: public static void main(String args[]) {
016: // Construct the container
017: ArrayList charts = new ArrayList();
...
027: // Display all objects if none requested

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

259

028: if (args.length == 0) {
029: System.out.println("\nContainer contents:");
030: showContainer(charts);
031: System.out.println("\nEnter a chart number to find");
032: System.out.println("ex. java BinaryDemo 11428");
033: } else {
034:
035: // Search container using Collections.binarySearch()
036: try {
037: // Preparations for a binarySearch();
038: int num = Integer.parseInt(args[0]); // Get chart number
039: Comparator comp = Chart.byNumber(); // Create Comparator
040: Chart key = new Chart(num, "", 0); // Create search key
041: Collections.sort(charts, comp); // Sort container
042:
043: // Search the container for the key object
044: int index = Collections.binarySearch(charts, key, comp);
045: if (index < 0)
046: System.out.println("Chart #" + args[0] + " not found");
047: else
048: System.out.println(charts.get(index)); // Show chart
049: }
050: catch (NumberFormatException e) {
051: System.out.println("Error in argument " + e.getMessage());
052: }
053: }
054: }
055: }

Compile and run the program to display a list of the container's Chart objects and to print
brief instructions. Type the following lines shown in bold:

javac BinaryDemo.java
java BinaryDemo
Container contents:
11013 Morehead City Hrbr 1:12500
...
26341 Bermuda Islands 1:50000
Enter a chart number to find
ex. java BinaryDemo 11428

To activate the binarySearch() method, enter a chart number to find:

java BinaryDemo 25641
25641 Virgin Islands 1:100000

If you enter a number for a chart that's not in the container, the program reports this fact
with the message:

java BinaryDemo 11542
Chart #11542 not found

Finally, if you enter a non-integer argument, the program catches the resulting exception
and reports the error:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

260

java BinaryDemo Bermuda
Error in argument Bermuda

All of these actions are demonstrative of the kinds of programming you may need when
calling binarySearch(). In the program's listing, lines 038-041 show the preparations
typically needed before starting a search. The first statement converts the command-line
argument from a string to an integer:

int num = Integer.parseInt(args[0]);

This might throw NumberFormatException, and must be executed in a try-catch block as
shown in the listing. The next statement creates the Comparator object to be used in
sorting and searching the container:

Comparator comp = Chart.byNumber();

You could call another factory method such as byScale() to create a different Comparator
object for searching on alternate fields. However, because the Comparator object
compares Chart objects, not merely individual fields, we also need a full Chart object to
serve as the search key:

Chart key = new Chart(num, "", 0);

You might think that only num is needed for the key, since in this example the program
searches for a chart by number. However, an int value is not an object, and there is no
way to pass it to binarySearch(). A good solution, as demonstrated here, is to create a full
object with only the nec essary field initialized to the search key. In this case, a new Chart
object is created with the requested number, but the other fields are set to meaningless
values. (Another way to do this is to have the class provide alternate constructors that
would, for instance, create a Chart object given only a chart's number.)

The final preparation step sorts the container, using the Comparator object just created,
and then calls binarySearch():

Collections.sort(charts, comp);
int index = Collections.binarySearch(charts, key, comp);

The same Comparator object is used in sorting and searching the charts container for the
key object. If the method returns –1, the search failed. Otherwise, index identifies the
matching Chart. In this example, the program prints the object by calling the List
interface's get() method:

System.out.println(charts.get(index));

Behind the scenes, println() calls the Chart class's toString() method for a string
representation of the found object. Because toString() is inherited from Object, no type-
cast expression is needed here. But if you want to save a reference to the saved object,
use code such as the following:

Chart t = (Chart)charts.get(index);
String s = t.toString();
System.out.println(s);

The first statement requires a type-cast expression to tell the compiler that get(), which
returns Object, actually returns a Chart object. This throws ClassCastException if the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

261

object is not a Chart, or of an extended class, so be careful with code like this. The
second statement calls Chart.toString() for a string representation of the found object.

Note

The binarySearch() methods throw ClassCastException if the objects in
the container cannot be compared. This typically happens because the
objects' class fails to implement the Comparable interface and provide a
compareTo() method. However, it can also happen if the same container
holds objects of different classes that are not mutually comparable. If you
run into this trouble, you might create a class with instance variables of the
dissimilar types to store in the container, and then provide a Comparator
factory method along with a compareTo() method that performs the
necessary comparison for two objects of the class.

Building Custom Lists
Creating a custom List-based container from scratch means implementing the List
interface and extending one of its descendant abstract classes such as
AbstractSequentialList. But in many cases, you don't have to work so hard. Consider
instead simply extending an existing concrete class and add the new capabilities you need.
After all, that's what classes are for — don't start over from scratch when you can more
simply attach new code onto an existing class.

Writing a Stack Class
To demonstrate how to create a custom List class, and at the same time to illustrate how
to implement an algorithmic data structure using a Java container, I wrote a Stack class
that extends LinkedList. The result is Listing 15-13, Stack.java. (This file is in the
c15/StackDemo directory.)

Listing 15-13
StackDemo/Stack.java
001: import java.util.Collection;
002: import java.util.LinkedList;
003:
004: class StackEmptyException extends Exception {
005: StackEmptyException(String s) { super(s); }
006: }
007:
008: public class Stack extends LinkedList {
009: // Constructors
010: public Stack() { super(); }
011: public Stack(Collection c) { super(c); }
012: // Public methods
013: public void push(Object o) {
014: addLast(o);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

262

015: }
016: public Object pop() throws StackEmptyException {
017: if (size() == 0)
018: throw new StackEmptyException("pop on empty stack");
019: return removeLast();
020: }
021: public Object peek() throws StackEmptyException {
022: if (size() == 0)
023: throw new StackEmptyException("peek on empty stack");
024: return getLast();
025: }
026: // Unsupported methods (incomplete –– see text)
027: public final Object removeFirst() {
028: throw new UnsupportedOperationException();
029: }
030: public final void addFirst(Object o) {
031: throw new UnsupportedOperationException();
032: }
033: }

Note

The java.util package provides its own Stack class. However, this is an
older legacy class that is best not used in new code.

The Stack class shown in the listing implements a classic stack data structure with
methods for pushing new objects onto a stack and popping off existing ones. A classic
stack is a last-in-first-out (LIFO) data structure. Only the object at the top of the stack is
available for use — like plates in a spring-loaded dish bin. However, Stack provides a
method to peek at the top item without removing it.

The source code begins by importing the Collection interface and the LinkedList class. It
also declares an exception class, StackEmptyException, for illegal operations such as
attempting to pop an object off an empty stack. Stack extends the concrete class,
LinkedList (see line 008).

Two constructors at lines 010-011 provide the means to construct Stack containers. As
mentioned, the Collection interface specifies that all containers provide at least two ways
to construct container objects — a default constructor, and one that takes a Collection
object argument. In this case, there's nothing new to initialize in either constructor, so the
Stack constructors simply pass on their duties to the LinkedList constructors by calling
super().

Further into the Stack class, three public methods at lines 013-025 — push(), pop(), and
peek() — implement the classic stack algorithm's operations. The methods simply call
LinkedList methods to do their jobs — addLast(), removeLast(), and getLast(). Two of
the methods, pop() and peek(), throw StackEmptyException if called for an empty stack.
These are checked exceptions, requiring the methods to be called in a try-catch block.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

263

Note

If the Stack class methods didn't throw an exception for illegal operations,
the underlying LinkedList methods would throw the unchecked
NoSuchElementException. Such an exception is considered to be a
programming error that should be prevented from ever occurring. The
Stack class shows one way to do that by effectively replacing the
possibility of receiving an unchecked exception with a checked exception
that can be properly handled, and most important, verified for proper use
by the compiler.

Preventing Illegal Method Calls
Another concern when extending a container class is the inheritance of methods that you
don't want programmers to use. For instance, in this case, because Stack extends
LinkedList, inherited methods provide illegal ways to access a Stack data structure. There
is nothing to prevent a program from executing a statement such as

myStack.remove(2); // ???

A classic stack's contents must be accessed only by popping them off the top of the
structure (but, as mentioned, peeking at the top object is allowed).

One way to prevent calling inherited methods that would cause harm in the extended
class is to have them throw an exception as shown at lines 026-032. For example, to
prevent Stack users from calling the inherited removeFirst() method, override it like this:

public final Object removeFirst() {
 throw new UnsupportedOperationException();
}

The UnsupportedOperationException class is provided by the java.lang package, and is
therefore available to all Java code. Because the removeFirst() method is declared public,
it can still be called, but it always throws the unchecked exc eption. Even if the user
attempts to catch the exception, the method does not call its superclass method, and
therefore, the new method has no effect. Additionally, the method is made final so that a
class that extends Stack cannot override removeFirst() in a vain attempt to reactivate the
illegal operation.

Using the Stack Class
Listing 15-14, StackDemo.java, demonstrates how to use the Stack class described in the
preceding section.

Listing 15-14
StackDemo.java
001: import Stack;
002:
003: class StackDemo {
004: public static void main(String args[]) {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

264

005: String s;
006: try {
007: Stack fruitStack = new Stack();
008: fruitStack.push("Apples");
009: fruitStack.push("Peaches");
010: fruitStack.push("Pumpkin");
011: // Enable following to force an unchecked exception
012: // fruitStack.removeFirst();
013: // Peek at top of stack
014: s = (String)fruitStack.peek();
015: System.out.println("\nTop of stack = " + s);
016: // Pop all objects from stack
017: System.out.println("\nPopping all objects:");
018: while (!fruitStack.isEmpty()) {
019: s = (String)fruitStack.pop();
020: System.out.println(s);
021: }
022: // Enable following to force a checked exception
023: // s = (String)fruitStack.pop();
024: } catch (StackEmptyException e) {
025: System.out.println("*** Error: " + e.getMessage());
026: }
027: }
028: }

Line 007 creates a Stack container using the class's default constructor. After that, a few
strings are pushed onto the stack by calling the Stack class's push() method. Line 014
peeks at the top object in the stack. The String objects are then popped off the stack and
displayed using a while loop at lines 018-021 that executes until the Stack object is empty.

To experiment with the Stack class's exceptions, enable line 012, compile, and run to
force an UnsupportedOperationException to be thrown. This happens when the enabled
statement calls the illegal method, removeFirst(), that Stack inherits from LinkedList.
Enable line 023 to force a checked StackEmptyException when trying to pop an empty
stack.

Summary
* The List interface provides fundamental methods for list-like containers. The

word "list" is used in a general way for any objects that might be listed together,
not necessarily for a linked-list data structure.

* The ArrayList and LinkedList classes implement the List interface. They provide
two different ways to create lists of objects.

* An ArrayList container is similar to an array — it stores its object references
physically together in memory. The container automatically expands as needed to
hold objects added to it. You may specify an initial size for an ArrayList container,
and you may expand it in advance of insertions. An ArrayList container provides
rapid, random access to objects using index values.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

265

* The LinkedList class links its objects together using references. This type of
container grows and shrinks for every insertion or deletion and is potentially more
memory-efficient than ArrayList. Insertions and removals from a LinkedList are
also potentially faster than for similar operations in an ArrayList, especially for
objects in the middle of the container.

* The Collection and List interfaces provide methods such as contains() and
indexOf() that you can use to search List-based containers. The Collections class
provides a binarySearch() method that performs fast and versatile searches for any
List-based container, but you must remember to sort the container before calling
this method.

* To build a custom List container, you could implement the List interface and
extend an abstract class such as AbstractList. However, it is often easier to simply
extend a concrete class such as ArrayList and add the new programming you need.
The Stack class in this chapter demonstrates this technique and also shows how to
throw an exception that prevents calls to inherited methods that are inappropriate
or harmful.

Chapter 16 Set Collections
In Java's container library, a set is a container that stores a unique collection of objects.
No duplications are permitted in a set, making this type of container suitable for
databases of unique values — such as a set of programming-language reserved words or a
set of network login names.

This chapter explores the library's two set interfaces, Set and SortedSet, on which two
concrete classes are based, HashSet and TreeSet. I also point out some related Collections
class utility methods that you can use to operate on sets.

In This Chapter

* Using the Set and SortedSet interfaces

* Programming with hash tables

* The TreeSet class

* Parsing text with TreeSet

* Set-based utilities

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

266

Set Interfaces
Listing 16-1, Set.txt, shows the Set interface's methods. The interface is especially
interesting because Set extends Collection (refer back to Figure 14-2). However, Set adds
nothing to Collection, and in fact, both interfaces are identical. So you don't have to flip
pages, the method declarations are repeated here.

The Set Interface
Listing 16-1, Set.txt, illustrates the methods of the Set interface.

Listing 16-1
Set.txt
001: // Set interface methods
002: int size();
003: boolean isEmpty();
004: boolean contains(Object o);
005: Iterator iterator();
006: Object[] toArray();
007: Object[] toArray(Object a[]);
008: boolean add(Object o);
009: boolean remove(Object o);
010: boolean containsAll(Collection c);
011: boolean addAll(Collection c);
012: boolean retainAll(Collection c);
013: boolean removeAll(Collection c);
014: void clear();
015: boolean equals(Object o);
016: int hashCode();

You might wonder, if Set is identical to Collection, why does the library bother creating
it? It does so to separate the contracts of Set- and List-based containers, the major
difference being that sets contain unique objects, but lists allow duplications. Also, from
Figure 14-2, because Set and List extend Collection, they are siblings, but they are not
otherwise directly related. (Think of it this way: a sister is not an extension of her brother,
but both children are extensions of their parents.)

Because Set and Collection provide the same methods, you already know a lot about how
to use Set-based classes. But keep the following key points in mind:

* The word "set" in Java's container library refers generally to any collection of
unique objects, not necessarily a mathematical set.

* Changes to any object in a set that make that object equal to another object in the
same set cause the set to behave in unpredictable ways. You are not prevented
from modifying a set's objects, but the consequences of doing so are your
responsibility.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

267

* A container class based on Set (HashSet for example) is expected to provide at
least two constructors: a default no-parameter constructor, and one that accepts a
Collection container. If that container has any duplicate objects, they are not
added multiple times to the set, but no error results. Set-based container classes
may declare additional constructors as needed.

* A Set may be empty or it may be composed of a single object (a singleton set).
See “Set Utilities” in this chapter for more on these subjects.

* A Set may contain one, and only one, null reference — objects in sets must all be
unique, including the null reference.

* A Set may not contain itself.

* A Set does not define any ordering on its contained objects. If you need to
maintain a Set in sorted order, see the SortedSet interface described in the next
section.

* Call the iterator() method as explained in Chapter 15, “List Collections” (see line
005 in Listing 16-1), and use the resulting object to access all of a Set container's
objects. Remember, however, that the order in which you receive each object is
not defined.

The SortedSet Interface
The SortedSet interface, shown here in Listing 16-2, SortedSet.txt, extends Set and
provides some additional methods. As the interface's name implies, a SortedSet container
defines an ordering for its objects. Specifically, objects inserted into a SortedSet
container must be of classes that implement the Comparable interface and provide a
compareTo() method. As with Set containers, SortedSet containers are collections of
unique objects. No duplications are permitted in a SortedSet container.

Listing 16-2
SortedSet.txt
001: // SortedSet interface methods
002: Comparator comparator();
003: SortedSet subSet(Object fromElement, Object toElement);
004: SortedSet headSet(Object toElement);
005: SortedSet tailSet(Object fromElement);
006: Object first();
007: Object last();

A class that implements SortedSet (TreeSet for example) is expected to provide at least
four constructors:

* A no-parameter default constructor

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

268

* A constructor that accepts a Comparator object to be used in maintaining the set
objects' order

* A constructor that accepts a Collection container whose objects are all added to
the set, minus any duplicates

* A constructor that accepts a SortedSet container, resulting in a new set containing
all the original set's objects in the same order

The TreeSet, discussed later in this chapter, provides all four constructors. You should do
the same if you are creating a custom SortedSet container class. However, because
interfaces cannot declare constructors, the compiler does not enforce these rules.

If you construct a SortedSet container by passing its constructor a Comparator object, you
may call the comparator() method to receive that object's reference. For example, using
the Chart class from Chapter 15, you can create a TreeSet container using the statement

TreeSet T = new TreeSet(Chart.byScale());

The resulting SortedSet-based container is maintained in the order defined by the
Comparator object — in this example, by scale fields in the Chart objects. An iteration
over the container's objects would return them sorted by those fields. If it's not convenient
to maintain a copy of the Comparator object, after executing the preceding statement, you
can obtain it by calling comparator() like this:

Comparator C = T.comparator();
System.out.println(C);

When I tried that, my system printed

Chart$ChartComparator@5d87b2

This is the Comparator object's default name, as provided by the native toString()
implementation inherited from Object. The string is composed of the Chart and its inner
ChartComparator class names, plus the object's reference address. If the SortedSet is
created without using a Comparator object, then the comparator() method returns null:

TreeSet T = new TreeSet(); // Default constructor
Comparator C = T.comparator();
System.out.println(C);

That prints null on screen. You might use the comparator() method to determine whether
a set is maintained by a Comparator object. After obtaining that object, if it is not null,
you can pass to other methods — for example, to a Collections class sort() method to be
called for a SortedSet container that has been converted to a List-based container.

Note

If you construct a SortedSet container using another SortedSet container,
the new container uses the same Comparator object, if any, in the original
set. However, if you build a SortedSet container from any other Collection
container, then the resulting set's Comparator is set to null, and the
objects in the set must be of classes that implement the Comparable

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

269

interface and provide a compareTo() method. Receiving a
ClassCastException is a good indication that you have violated this rule —
for example, in attempting to convert a list of non-comparable objects into
a SortedSet.

The SortedSet interface provides the means to create non-inclusive subsets (see line 003
in Listing 16-2). Specify the two objects A and B from which to create the new set, which
contains all objects from A up to but not including B. If A equals B, the resulting set is
the empty set. The following hypothetical code creates a subset of objects from A to the
predecessor of B:

TreeSet original = new TreeSet();
original.add(...); // Add objects to set
TreeSet subset = original.SubSet(A, B);

The meaning of "the predecessor of B" is not strictly defined, which presents the problem
of how to create an inclusive set from A up to and including B. If your class provides a
method successorOf(X) that returns the successor object of X, the preceding statement
could be written as

TreeSet subset = original.SubSet(A, YourClass.successorOf(B));

Tip

See “TreeSet Subsets” in this chapter for another way to write a general
successorOf() method and to create an inclusive subset of objects in a
SortedSet container.

Two other SortedSet interface methods, headSet() and tailSet() (see lines 004-005 in
Listing 16-2), also create subsets. The headSet() method returns a subset equal to the first
object up to but not including the object passed to the method. The tailSet() method
returns a subset fro m the specified object to the last object in the set.

The SortedSet interface's subSet(), headSet(), and tailSet() methods return a view of the
set, which is called the backing set. This means that any changes to objects in the
resulting subset are made also to the same objects in the original set. In addition, any
attempts to insert a new object into the subset outside of the subset's specified range
throw IllegalArgumentException.

Finally in the SortedSet interface are two methods, first() and last(), that (as you can
probably guess) return the first and last objects in a SortedSet container. These methods
throw NoSuchElementException if called on an empty set, so you should probably call
isEmpty() beforehand like this:

TreeSet T = new TreeSet();
...
if (!T.isEmpty()) {
 YourClass firstObject = (YourClass)T.first();
 YourClass lastObject = (YourClass)T.last();
 ...
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

270

Set Containers
Two concrete classes provide two different ways to create Set-based containers. The first
class, HashSet, stores and retrieves objects using their hash values. The second, TreeSet,
stores and retrieves objects in a tree-like structure. Each container is used similarly, but in
general, HashSet containers often provide the fastest lookup times. TreeSet containers
provide somewhat slower lookup speeds, but maintain objects in sorted order. Using an
Iterator with a HashSet returns the container's objects in an unspecified order. Using an
Iterator with a TreeSet returns objects in sorted order.

Note

Due to the nature of sets, an Iterator applied to a HashSet or TreeSet
container does not necessarily return objects in the same order they were
inserted.

Hash Tables
If you are unfamiliar with how hashing works, a brief explanation will help you
understand how to use the HashSet class and others that use hash values to store and
retrieve objects. In general, these types of containers are known as hash tables. Objects in
hash tables are stored and retrieved using hash values to compute indexes for storing
object references, typically in arrays.

Those arrays are additionally organized into buckets that store groups of object references.
Hash tables usually allocate a certain number of buckets above the minimum required to
hold a certain number of objects. Generally, leaving some extra room in a hash table
improves performance, at least up to a point. To do that, when creating hash tables, you
typically specify two values — an initial capacity, and a load factor. The initial capacity
is the table's starting size. The load factor determines when the hash table is expanded.
For example, a load factor of 0.80 means the table is expanded when it becomes about 80
percent full.

Note

Java hash table containers, HashSet and HashMap, define a default
capacity of 11 objects and a load factor of 0.75.

In Java programming, all objects have hash values as computed by Object.hashCode().
You may rely on that default implementation, inherited by all Java classes, or you can
override the method in your own class and compute a hash value based on your objects'
contents. Ideally, each object should return a unique hash value. Two objects that are the
same (as defined by their class's equals() method) must return the same hash value. Two
objects that are not the same are not required to return different hash values, but they
should do so if possible.

The default hash value that Object.hashCode() returns is typically the object's address in
memory, although Java does not dictate this to implementers. If you override the method,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

271

you need to figure out some clever way to create a unique integer value for your class —
for example, adding all character Unicode values in an object's string variable, perhaps
limited to some arbitrary maximum.

If your class overrides Object.equals() — for example, to compare two objects based on
their contents — then the class should probably also override Object.hashCode(). This is
necessary because two distinct objects with identical content have different references,
but if it's your intention to consider them to be equal, they should generate the same hash
value. In this case, the default Object.hashCode() would incorrectly return different hash
values for the equal objects.

A hash table uses an object's hash value to determine where to store a reference to that
object. Thus, given the object's hash value, locating the object requires only a single
indexing operation, nearly guaranteeing high-speed searches. (Many parsers in compilers
use hash tables for looking up a programming language's reserved words.) If two objects
produce the same hash value, the result is a clash. This is handled by storing the object at
the next available position. Clashes reduce hash table lookup speeds and are best avoided
if possible by making the hash table reasonably large.

Tip

To test the worst-case performance of a hash table, override
Object.hashCode() and have it return the same value for all objects. In
writing custom hash table containers, this is also a good test procedure to
be sure that your container correctly handles hash-value clashes.

The HashSet Class
The HashSet class implements a classic hash table based on the Set interface. The objects
in a HashSet container are stored (and returned by an iterator) in no particular order.
Listing 16-3, HashSet.txt, shows the class's constructors. The class also provides a clone()
method that you can call to clone a HashSet container. Because HashSet implements the
Set interface, you may also call the methods stipulated in the Set interface (refer back to
Listing 16-1).

Listing 16-3
HashSet.txt
001: // HashSet constructors
002: public HashSet();
003: public HashSet(Collection c);
004: public HashSet(int initialCapacity, float loadFactor);
005: public HashSet(int initialCapacity);

Create a default HashSet container using the statement

HashSet myset = new HashSet();

However, if you know or can calculate approximately how many objects you will store in
the container, it is usually better to specify an initial capacity larger than the default of 11.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

272

If Num specifies the number of objects to be stored in the container, it is reasonable to
specify an initial capacity of twice that value:

HashSet myset = new HashSet(2 * Num, 0.60);

That also specifies a load factor of 0.60 — in other words, the container will be expanded
when it becomes about 60 percent full. To use the default load factor of 0.75, specify an
initial capacity alone:

HashSet myset = new HashSet(2 * Num);

As a general rule, a large initial capacity and a small load factor improve hash table
performance, but with diminishing returns. It is often necessary to experiment with
different values to achieve optimum performance.

You may also convert any Collection-based container to a HashSet by passing it to the
constructor shown at line 003. For example, the following code converts a LinkedList
container to a HashSet:

LinkedList mylist = new LinkedList();
// add objects to mylist
HashSet myset = new HashSet(mylist);

Tip

Because all objects in Set-based containers are unique, to remove
duplicate objects from another type container, simply convert it to a
HashSet or TreeSet container.

To add objects to a HashSet container, call the add() method. To remove an object, call
remove(). To erase the container, call clear(). These are the same Collection methods you
have seen in other examples, and which are also stipulated by the Set interface (see
Listing 16-1).

Parsing Text with HashSet
As mentioned, parsers often use hash tables for fast searches. To demonstrate some of the
code needed to parse a text file's words, and also to show how to use a HashSet container,
Listing 16-4, ParseWords.java, reads a file Quote.txt (also in the c16/ParseWords
directory). The program uses a HashSet container to collect and count all of the unique
words in the file.

Listing 16-4
ParseWords.java
001: import java.util.*;
002: import java.io.*;
003:
004: class ParseWords {
005: public static void main(String args[]) {
006: // Variables
007: int i;
008: char c;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

273

009: StringBuffer sbuf = new StringBuffer();
010: HashSet hashTable = new HashSet(100);
011:
012: // Read and parse words from Quote.txt
013: System.out.println();
014: try {
015: FileReader f = new FileReader("Quote.txt");
016: while ((i = f.read()) >= 0) {
017: c = (char)i;
018: System.out.print(c);
019: c = Character.toLowerCase(c);
020: if (Character.isWhitespace(c)) {
021: if (sbuf.length() > 0)
022: hashTable.add(sbuf.toString());
023: sbuf.setLength(0);
024: } else
025: if (Character.isLetter(c))
026: sbuf.append(c);
027: }
028: if (sbuf.length() > 0)
029: hashTable.add(sbuf.toString());
030: } catch (IOException e) {
031: System.out.println("*** I/O error!");
032: }
033:
034: // Display hash table count and contents
035: System.out.println("\n");
036: Iterator I = hashTable.iterator();
037: String s;
038: System.out.println("There are " + hashTable.size()
039: + " unique words in the file");
040: while (I.hasNext()) {
041: s = (String)I.next();
042: System.out.println(s);
043: }
044: }
045: }

Running the program displays the follo wing information (changed in format slightly to
save a little room):

"Not everything that can be counted counts, and not everything
that counts can be counted." – Albert Einstein (1879–1955)

There are 10 unique words in the file
einstein albert not everything can
be counted and that counts

After displaying the text in Quote.txt, the program reports how many unique words the
text contains, and then lists the words in the file. (Chapter 24, “Input and Output
Techniques,” discusses file handling — I don't explain those statements here.) Lines 009
and 010 create a StringBuffer sbuf and a HashSet container, hashTable, with an initial

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

274

capacity of 100. I use a StringBuffer object instead of a string because the program builds
each word in the file one character at a time by calling the class's append() method (see
line 026). Lines 021-022 add each completed word to the hashTable container with the
statements

if (sbuf.length() > 0)
 hashTable.add(sbuf.toString());

This is repeated at lines 028-029 in case a word is left in the buffer upon reaching the end
of the file. To display the number of words in the container, the program simply calls the
size() method, stipulated by the Set interface:

System.out.println("There are " + hashTable.size()
 + " unique words in the file");

Finally, to display the words in the container, the program obtains an Iterator object, and
then uses a while loop to get each object as a String:

Iterator I = hashTable.iterator();
String s;
...
while (I.hasNext()) {
 s = (String)I.next();
 System.out.println(s);
}

SortedSet Containers
There is only one SortedSet container in the library, TreeSet, described in this and the
following sections.

The TreeSet Class
The TreeSet class, shown in Listing 16-5, TreeSet.txt, implements the SortedSet interface
(Listing 16-2). Because SortedSet extends Set, TreeSet also has all of the methods in the
Set interface (Listing 16-1). The listing here shows only the TreeSet constructors. See the
other mentioned listings and discussions for methods you can call for TreeSet containers.
Like HashSet, TreeSet also implements the Cloneable interface and provides a clone()
method that you can call to clone a TreeSet container.

Listing 16-5
TreeSet.txt
001: // TreeSet constructors
002: public TreeSet();
003: public TreeSet(Comparator c);
004: public TreeSet(Collection c);
005: public TreeSet(SortedSet s);

You can construct a TreeSet container four ways. Specify no argument to the constructor
to create a default object:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

275

TreeSet myTree = new TreeSet();

You can also specify another SortedSet container, or any Collection-based object. This
lets you convert another type of container to a TreeSet (minus any duplicate objects in the
original). For instance, to convert an ArrayList container to a TreeSet, use code such as

ArrayList myList = new ArrayList();
// ... add objects to myList
TreeSet myTree = new TreeSet(myList);

Alternatively, you can specify a Comparator object to be used in maintaining the
container's objects in sorted order. Using the Chart class from the preceding chapter, the
following constructs a TreeSet container for storing Chart objects in scale order:

TreeSet myTree = new TreeSet(Chart.byScale());

When creating a TreeSet container that way, any objects added to the container must be
of the appropriate class (Chart in this case), or you receive a ClassCastException error.
The following statement correctly adds a Chart object to the container:

myTree.add(new Chart(12245, "Hampton Roads", 20000));

But the following attempt to add a String object to the same container now throws the
exception:

myTree.add(new String("This doesn't work")); // ???
...
Exception in thread "main" java.lang.ClassCastException:
java.lang.String
 at Chart$ChartComparator.compare(Chart.java:59)

Of course normally, TreeSet containers (and all others) can store String and other kinds
of objects. However, because this container was created using a Chart Comparator object,
objects added to the container must be Chart objects or those of a class that extends Chart.

Parsing Text with TreeSet
TreeSet and HashSet containers are used similarly. However, there are significant
differences between the two classes, including the following:

* There is no way, nor any need, to specify an initial size of a TreeSet container as
there is for a HashSet. TreeSet containers expand and shrink for every addition
and removal operation.

* A TreeSet container maintains its objects in sorted order, either by virtue of the
objects' class compareTo() method (the class must implement the Comparable
interface), or by using a Comparator object. A HashSet container does not
maintain its objects in any particular order.

* A TreeSet container provides methods stipulated in the SortedSet interface such
as subSet(), headSet(), and tailSet(). Also provided are first() and last() methods.
These methods are not available to HashSet containers or any others that
implement the Set interface.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

276

* Call the TreeSet class's comparator() method, stipulated in the SortedSet interface,
to determine whether a Comparator object is being used to maintain the set's
object order. If comparator() returns null, then no Comparator object is in use.
HashSet and other Set-based containers do not use Comparator objects.

Aside from those observations, a TreeSet differs from a HashSet only in keeping its
contained objects in sorted order. Because those objects are internally linked in a tree-like
structure, insertions and removals from a TreeSet are fast, but in most cases not equally
as fast as in HashSets.

To demonstrate how to use a TreeSet, Listing 16-6, ParseTree.java, is the same
demonstration as in Listing 16-4, ParseWords.java, but replaces HashSet with TreeSet.
Because the programs are nearly identical, I cut out most duplicated lines to save room
here. The only real difference between the two programs is that when the hashTable
container is created at line 010, no initial capacity is specified as was done in Listing 16-4.

Listing 16-6
ParseTree.java
001: import java.util.*;
002: import java.io.*;
003:
004: class ParseTree {
005: public static void main(String args[]) {
...
010: TreeSet hashTable = new TreeSet();
...
044: }
045: }

TreeSet Subsets
Using the TreeSet class's subSet(), headSet(), and tailSet() methods to obtain subsets of
SortedSet containers can be a little tricky. Review the methods' declarations (see also the
SortedSet interface, Listing 16-2):

public SortedSet subSet(Object fromElement, Object toElement);
public SortedSet headSet(Object toElement);
public SortedSet tailSet(Object fromElement);

Each method returns a SortedSet object, which might be any container of a class that
implements SortedSet (TreeSet most likely). To subSet(), pass the first and last object for
which you want to create the subset. The resulting set contains the objects starting with
fromElement up to but not including toElement. And therein lies the tricky part.

Note

A subset is just a view of the original set. It is not a clone. Technically
speaking, subsets are backed by the original set, meaning that any
changes to objects in the subset, including any additions, are made also to

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

277

the original set of objects. Additions outside of the subset's initial range
throw an IllegalArgumentException.

To obtain a subset of a SortedSet container that includes objects from a starting element
up to and including the end element requires that you be able to calculate or find the
successor of the final object. But that is often not so easily done. To demonstrate the
problem, and one possible solution, Listing 16-7, SubTree.java, creates a TreeSet of
strings, and then attempts to obtain an inclusive subset of those entries.

Listing 16-7
SubTree.java
001: import java.util.*;
002: import java.io.*;
003:
004: class SubTree {
005: // Display contents of a SortedSet container
006: static void showSet(SortedSet S, String msg) {
007: System.out.println("\n" + msg);
008: Iterator I = S.iterator();
009: while (I.hasNext())
010: System.out.print(" " + I.next());
011: }
012:
013: public static void main(String args[]) {
014: // Create the TreeSet container and add some objects to it
015: TreeSet myTree = new TreeSet();
016: myTree.add("Peach");
017: myTree.add("Banana");
018: myTree.add("Cherry");
019: myTree.add("Apple");
020: myTree.add("Pear");
021: myTree.add("Kiwi");
022: myTree.add("Grapefruit");
023:
024: // Get a non–inclusive subset of the tree
025: TreeSet subTree =
026: (TreeSet)myTree.subSet("Cherry", "Peach");
027: // Get an inclusive subset of the tree
028: // TreeSet subTree =
029: // (TreeSet)myTree.subSet("Cherry", "Peach\0");
030:
031: // Display both trees
032: showSet(myTree, "Full TreeSet container:");
033: showSet(subTree, "Subset of container:");
034: }
035: }

Running the program displays the following text:

Full TreeSet container:
 Apple Banana Cherry Grapefruit Kiwi Peach Pear

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

278

Subset of container:
 Cherry Grapefruit Kiwi

Lines 015-022 construct the TreeSet container, myTree, and add some fruit names as
String objects. To obtain a subset of myTree, the program executes the statement at lines
025-026 repeated here for reference:
TreeSet subTree =
 (TreeSet)myTree.subSet("Cherry", "Peach");

A type-cast expression is necessary to satisfy the compiler that this is a TreeSet, which is
needed because subSet() returns the more general SortedSet interface type. Because
subSet() returns a non-inclusive subset, the result (as you can see from the program's
printout) includes all strings from @@dpCherry@@dp up to but not including
@@dpPeach@@dp. To obtain an inclusive subset that includes that string, you must
specify the successor to @@dpPeach@@dp when creating the subset. For String objects,
this is easily done with a little trick. Delete or comment-out lines 025-026 and enable
lines 028-029, repeated here:

TreeSet subTree =
 (TreeSet)myTree.subSet("Cherry", "Peach\0");

That's the same statement except for the string @@dp\0@@dp (a null character)
appended to @@dpPeach@@dp. It may not be intuitively obvious that this creates the
successor to @@dpPeach@@dp, but it does exactly that because, if the container has any
other strings, the next one must be alphabetically greater than @@dpPeach@@dp plus a
null character. As I said, tricky.

But what do you do if your container has objects that are not strings? The answer depends
on your objects' class. If that class can somehow calculate the successor of an object, say
by providing a static successor() method, you might obtain an inclusive subset of a
TreeSet container for two objects, obj1 and obj2, using code such as

TreeSet subTree =
 (TreeSet)myTree.subSet(obj1, YourClass.successor(obj2));

That may not always be possible, in which case you need another way to find an object's
TreeSet successor. There may be several possible solutions to this problem, but the one
shown here should work for objects of most classes. Listing 16-8, Successor.java,
duplicates the preceding program, but it uses a method to find a string's successor in a
TreeSet container.

Listing 16-8
Successor.java
001: import java.util.*;
002: import java.io.*;
003:
004: class Successor {
005:
006: // Return the successor of a SortedSet object or null if none
007: static Object successorOf(SortedSet s, Object o) {
008: SortedSet t = s.tailSet(o);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

279

009: if (t.size() < 2) return null;
010: Iterator I = t.iterator();
011: I.hasNext(); I.next(); I.hasNext();
012: return I.next();
013: }
014:
015: // Return the inclusive set of SortedSet objects o1 through o2
016: static SortedSet inclusiveSet(
017: SortedSet s, Object o1, Object o2) {
018: if (!s.contains(o1) || !s.contains(o2))
019: throw new NoSuchElementException();
020: Comparable c1 = (Comparable)o1;
021: Comparable c2 = (Comparable)o2;
022: if (c1.compareTo(c2) > 0)
023: throw new IllegalArgumentException();
024: Object successor = successorOf(s, o2);
025: if (successor == null)
026: return s.tailSet(o1);
027: else
028: return s.subSet(o1, successor);
029: }
...
039: public static void main(String args[]) {
040: // Create the TreeSet container and add some objects to it
041: TreeSet myTree = new TreeSet();
042: myTree.add("Peach");
...
050: // Get a non–inclusive subset of the tree
051: TreeSet subTree1 =
052: (TreeSet)myTree.subSet("Cherry", "Peach");
053:
054: TreeSet subTree2 =
055: (TreeSet)inclusiveSet(myTree, "Cherry", "Peach");
056:
057: // Display all tree sets
058: showSet(myTree, "Full TreeSet container:");
059: showSet(subTree1, "Non–inclusive subset:");
060: showSet(subTree2, "Inclusive subset:");
061: }
062: }

Two methods in the sample program find the successor of a SortedSet container object,
and return an inclusive subset of objects from one element up to and including another.
The first method, successorOf(), is declared at line 007 as

static Object successorOf(SortedSet s, Object o);

Pass any SortedSet container (a TreeSet for example) and an object. The method returns
the next object in the container, or null if the container is empty or no successor object
exists. That might happen, for instance, if the specified object is the last one in the
container, or if it doesn't exist. The method creates a tailSet() of the specified set with the
statement:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

280

SortedSet t = s.tailSet(o);

Remember that subsets are only views of the original set, not clones. Speaking
hypothetically, in this case, if the set contains ABCDEFG, and if the object specified is E,
the resulting tailSet() equals EFG. If the resulting subset has fewer than two elements,
there is no successor object and the method returns null. Otherwise, it uses an Iterator
object to find the next element after the first in the tailSet(). This is the object returned.

Method inclusiveSet() declared at lines 016-017 calls successorOf() and returns an
inclusive TreeSet subset. The method is declared as

static SortedSet inclusiveSet(
 SortedSet s, Object o1, Object o2);

Two exceptions are explicitly thrown: IllegalArgumentException if o1 > o2, and
NoSuchElementException if one or both objects are not in the set. A ClassCastException
is also thrown if the objects' class is not Comparable. After detecting these conditions and
throwing any necessary exceptions, the rest of the method shows a good example of the
SortedSet interface's tailSet() and subSet() methods:

Object successor = successorOf(s, o2);
if (successor == null)
 return s.tailSet(o1);
else
 return s.subSet(o1, successor);

If the successor of the specified object in the set is null, inclusiveSet() reverts to returning
the container's tailSet(). Otherwise, it calls the SortedSet interface's subSet() method to
return the non-inclusive set of the "from" object to the successor of the "to" object. Thus
the result contains the "to" object.

Not shown here is the headSet() method, which works similarly but returns the first
object up to but not including the second. You can use the successorOf() method
described here to create a headSet() that returns an inclusive subset.

Set Utilities
The Collections utility class in the java.util package provides four utility methods that are
useful for working with Set and SortedSet containers. The methods return Set and
SortedSet references, not object references of concrete classes such as TreeSet and
HashSet. They are therefore useful when a generalized view of a set is needed.

The first two methods return an unmodifiable view of a Set and SortedSet. They are
declared as
public static Set unmodifiableSet(Set s);
public static SortedSet unmodifiableSortedSet(SortedSet s);

Simply pass any Set or SortedSet container to the appropriate method and save the result.
For example, to construct an unmodifiable view of the myTree set from the preceding
sample program, you can use the statement:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

281

SortedSet fixedSet = Collections.unmodifiableSortedSet(myTree);

The resulting set must be saved as a SortedSet reference, not a reference to a TreeSet or
another concrete class. Attempts to modify the resulting set throw
UnsupportedOperationException:

fixedSet.add("Lime"); // ??? Throws exception

Empty sets are sometimes needed in algorithms that use set operations. For convenience,
the Collections class provides a static Set container, EMPTY_SET, that, as its name
implies, is always empty:

public static final Set EMPTY_SET;

Any attempts to add an object to the set result in an exception. You could use this
container in a comparison to test whether another set is equivalently empty. For example,
the following code erases myTree and then compares it with EMPTY_SET:

myTree.clear();
if (Collections.EMPTY_SET.equals(myTree))
 System.out.println("myTree is the empty set");

Finally in Collections is a method that returns a Set container with exactly one object, the
so-called singleton set. The method is declared as

public static Set singleton(Object o);

Pass any object to the method and save the result in a Set reference. For instance, this
creates a Set containing a single string:

Set oneSet = Collections.singleton("Oak");

A singleton set is limited to having one element. Any attempt to change that fact leads to
an UnsupportedOperationException:

oneSet.add("Pine"); // ??? Throws exception

Note

See also Chapter 19, "Threaded Code," for information on creating
synchronized (that is, thread-safe) sets and other containers.

Summary
* Set containers hold unique collections of objects. No duplicate objects are

permitted in set containers; however, adding a duplicate object is simply ignored
and is not considered to be an error.

* The Set interface stipulates the basic methods required of Set containers.
Although Set extends Collection, its methods are identical, and the purpose of the
Set interface is therefore largely organizational.

* The SortedSet interface extends Set and provides additional methods for unique
collections of objects maintained in sorted order. The SortedSet interface also
provides methods for obtaining subsets of SortedSet containers.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

282

* Two concrete classes, HashSet and TreeSet, implement the Set and SortedSet
interfaces. HashSet containers make rapid searches possible, but they require a
little extra space to maintain performance. TreeSet containers are memory
efficient, but searches are not as fast as with a HashSet.

* The HashSet class stores objects by way of their hash values, as returned by
Object.hashCode(). The default implementation of that method equals the object's
memory reference, however, Java does not guarantee that as a fact. You may
override the hashCode() method in your own class to compute a different hash
value.

* The TreeSet class stores objects in their natural sorted order, as provided by their
class's compareTo() method. The class must implement the Comparable interface.
When that is not convenient, you may alternatively construct a TreeSet container
using a Comparator object, in which case the objects' class need not be
Comparable.

* This chapter shows how to parse a text file's words and store them in a HashSet or
TreeSet container. The chapter also explains techniques for obtaining subsets of
SortedSet containers, which can be tricky, especially when you need an inclusive
set of objects.

* Finally in this chapter are explanations of some utility methods provided by the
Collections class in the java.util package. Two methods provide unmodifiable
views of a Set or SortedSet container. The Collections class also provides method
singleton() for obtaining a set containing only one item (a singleton set), and the
declaration EMPTY_SET containing the empty or null set.

Chapter 17 Map Collections
In the Java container library, a map is a set of unique key-value entries that resembles a
dictionary of words and definitions. The keys in a map must all be unique, and in that
regard, a map resembles a set as described in Chapter 16, "Set Collections." A map's key
is used to locate its associated values and to enter new key-value pairs into the container.
This makes a map ideal for a container that stores associations — for example, value-
string relationships that form a database of object properties.

This chapter explores the Map and SortedMap interfaces and the three concrete classes
that implement them — HashMap, WeakHashMap, and TreeMap. This part of the
container library tree stands alone — none of its interfaces or classes is based on the
Collection class. For reference, look back to Figure 14-3, which shows the relationship of
this branch of the container library tree. As that figure shows, all three concrete classes
extend AbstractMap, which implements the Map interface.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

283

In This Chapter

* The Map and SortedMap interfaces

* Map containers

* Understanding Map views

* A look at the WeakHashMap class

* SortedMap containers

* Creating a TreeSet dictionary

Map Interfaces
There are two map interfaces in the collection library — Map and SortedMap, discussed
in the following two sections.

The Map Interface
The Map interface stipulates the most basic of methods that related interfaces, abstract
classes (there is only one, AbstractMap), and concrete classes share. Map does not extend
Collection; it is a new interface that defines ground-zero methods for map containers.
Additionally, a Map does not maintain or return objects in any defined order. See the
SortedMap interface in the next section if you need that capability. Listing 17-1, Map.txt,
shows the Map interface's declarations.

Listing 17-1
Map.txt
001: // Map interface declarations
002: int size();
003: boolean isEmpty();
004: boolean containsKey(Object key);
005: boolean containsValue(Object value);
006: Object get(Object key);
007: Object put(Object key, Object value);
008: Object remove(Object key);
009: void putAll(Map t);
010: void clear();
011: public Set keySet();
012: public Collection values();
013: public Set entrySet();
014: boolean equals(Object o);
015: int hashCode();

Some of the Map interface methods resemble those in Collection. For example, size()
returns the number of key-value pairs in a container, and isEmpty() returns true if the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

284

container has no objects. Also, clear(), equals(), and hashCode() work as described for
other containers in the preceding chapters.

Most other methods work with keys, values, or key-value pairs. Call containsKey() to
determine whether a key is in a Map collection, or call containsValue() to determine
whether a value is held without having to know its key.

Note

In a classic associative data structure, a key is often required to perform a
search of values. Not so with Java Map containers — given a value, you
can locate its associated key.

Call the get() method to return an object's value, given its key. The method returns null if
the key is not found. This has the ambiguous characteristic that, if the container holds a
value equal to null, get() returns that value. Therefore, just because get() returns null does
not indicate whether an object is actually returned. If that causes you trouble, use
containsValue(null) to determine whether null is actually a member of the container. That
method is programmed in AbstractMap to search for null as an object in the container.

Call put() to insert a new key-value element into a Map container. If the key is already
present, calling put() replaces that key's current value with the newly specified one. If
necessary, the container expands to hold additional values — such expansion, however,
depends on the internal storage device used in implementing the Map interface. Call
remove() to delete a key-value element from the container given only its key.

The putAll() method inserts all of another Map's elements into a container. Use it to
transfer one type of Map container's contents to another — from a TreeMap to a
HashMap for example.

Three other methods provide Set and Collection views of a Map container. Call keySet()
to return a Set container of the Map's key values. Call values() for a Collection container
of all values held in a Map, minus their keys. Call entrySet() for a Set of the Map
container's Map.Entry elements. Map.Entry is an inner, nested interface, declared inside
the Map interface (the Map.Entry interface is discussed later in this chapter). The three
methods provide different ways to view any Map container:

* As a Set of keys (call keySet())

* As a Collection of values (call values())

* As a Set of Map.Entry objects (call entrySet())

Keep in mind that these alternate views are backed by the Map container, meaning that
any changes made to a key via keySet(), to a value via values(), or to a key or value via
entrySet() are also made to the original key or value in the Map container. Also be aware
that it is your responsibility to ensure that all Map container keys remain unique. If a

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

285

change to a key causes it to duplicate another key already in the container, the results are
unpredictable and are likely to cause serious problems with other operations.

Tip

The AbstractMap class implements the Map interface and provides many
method implementations for the three concrete classes, HashMap,
TreeMap, and WeakHashMap. When building your own custom Map
container classes, it is generally easier to extend AbstractMap than it is to
start from scratch by implementing the Map interface.

The SortedMap Interface
The SortedMap interface extends Map and provides some additional methods that apply
to associative containers sorted by key values. A SortedMap container always maintains
its objects in key order. At present, there is only one such concrete class in the library,
TreeMap. Listing 17-2, SortedMap.txt, shows the SortedMap interface's method
declarations.

Listing 17-2
SortedMap.txt
001: // SortedMap interface declarations
002: Comparator comparator();
003: SortedMap subMap(Object fromKey, Object toKey);
004: SortedMap headMap(Object toKey);
005: SortedMap tailMap(Object fromKey);
006: Object firstKey();
007: Object lastKey();

Remember that, because SortedMap extends Map, containers based on SortedMap
implement all of the methods listed here plus those for the Map interface shown in
Listing 17-1. The new methods are for use only with containers maintained in key order.

Call the comparator() method to retrieve the Comparator object used in comparing two
SortedMap container entries. If no Comparator is in use for the container, then this
method returns null. A Comparator is used only if specified when constructing the
SortedMap container. For an example, see "The TreeMap Class" in this chapter. (For help
using Comparator objects, see the section "Using Comparators and ArrayList" in Chapter
15, "List Collections.")

Three methods return type SortedMap and provide the means to obtain subset views of
any SortedMap container. Call subMap() for a subset of a container's entries from a
specified fromKey value up to but not including a toKey value. Call headMap() for a
subset of entries from the first one in the container up to but not including the specified
toKey value. Call tailMap() for a subset of entries from a specified fromKey value to the
last one in the container.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

286

Note

To obtain an inclusive subset of a SortedMap container's objects requires
being able to calculate a toKey value's successor. Similar programming
discussed under "TreeSet Subsets" in Chapter 16 can be used to find a
key value's successor.

Lastly in the SortedMap interface are two handy methods. Call firstKey() to find the first
key value in the container. Call lastKey() to find the last one. These methods are
particularly useful in determining the range of keys held in a SortedMap container.

Map Containers
Two concrete classes, HashMap and WeakHashMap, implement the methods stipulated
in the basic Map interface in Listing 17-1. The classes also extend the
AbstractMap class, which provides most of the common method implementations
stipulated by the interface. (As with all abstract classes in the container library, no new
methods are added over the declarations inherited from the interface.)

Both concrete classes use the concept of a hash table to store, retrieve, and remove key-
value entries in the container. This means that the key-value class must provide a
hashCode() method; however, the default method inherited by all classes from Object is
probably suitable in most cases. If not, you may override the method and provide a
custom hash value. For more help with hash tables, hash values, and the hashCode()
method, see "Hash Tables" in Chapter 16.

Listing 17-3, HashMap.txt, shows the HashMap class's constructors and one method,
clone(), which is not specified in the Map interface. In addition to these constructors and
method, all methods from the Map interface in Listing 17-1 are also available to
HashMap containers.

The HashMap Class
Listing 17-3
HashMap.txt
001: // HashMap constructors and method
002: public HashMap();
003: public HashMap(Map t);
004: public HashMap(int initialCapacity);
005: public HashMap(int initialCapacity, float loadFactor);
006: public Object clone();

There are four ways to construct a HashMap() container. The first and simplest technique
specifies no arguments. Use this method to create a container with a default initial
capacity (11) and hash-table load factor (0.75):

HashMap myMap = new HashMap();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

287

As with other hash-table container classes such as HashSet, you might want to specify an
initial size for the container. This is particularly wise if you know the program will insert
numerous objects, causing an expansion to occur. If Num equals the number of object to
be inserted, the following statement creates a HashMap container with a capacity of twice
that value:

HashMap myMap = new HashMap(2 * Num);

Always set aside additional room in a HashMap container — hash-table performance
generally improves by maintaining some extra space, at least up to a point. You can also
specify a load factor as a second argument to the constructor:

HashMap myMap = new HashMap(2 * Num, 0.60);

Constructed that way, the container will be expanded when it becomes about 60 percent
full. The default load factor of 0.75 is probably adequate for most uses. However, as with
all hash-tables, trial and error is the only reliable way to determine optimal initial-
capacity and load-factor values.

Finally, you can construct a HashMap container out of any other container of a class that
implements Map. This is sometimes useful for converting one type of Map container into
another. For example, you can convert a TreeMap container into a HashMap using code
such as this:

TreeMap symbols = new TreeMap();
// insert key–value entries into symbols
HashMap hashSymbols = new HashMap(symbols);

The first line constructs a TreeMap container, symbols. The last line converts the entries
in symbols into a new HashMap container, hashSymbols. Even though TreeMap
implements the SortedMap interface, this code is perfectly acceptable because SortedMap
extends Map — in other words, a TreeMap container is most generally referred to as a
Map.

Building HashMap Containers
One typical use for a HashMap container is to store associations — for example, a set of
values and their descriptions. To demonstrate how to build a HashMap container for this
purpose, Listing 17-4, SymbolMap.java, creates a small database of a few symbol values
and their names. I selected values typically used in Web page design to insert special
symbols. For instance, 169 represents the copyright symbol, entered in text as ©.
Although in order to save space here, the sample program's database is incomplete, you
could add additional symbols to make a useful utility. When you come across a cryptic
symbol value, run the program and enter it to see its name.

Listing 17-4
SymbolMap.java
001: import java.util.*;
002: import java.io.*;
003:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

288

004: class SymbolMap {
005:
006: // Display a Map container's keys and values
007: public static void showMap(Map m) {
008: Iterator I = m.entrySet().iterator();
009: while (I.hasNext()) {
010: // Get next Map.Entry object
011: Map.Entry entry = (Map.Entry)I.next();
012: System.out.println(
013: entry.getKey() + "\t:: " + entry.getValue());
014: }
015: }
016:
017: public static void main(String args[]) {
018: // Create a HashMap container and insert some associations
019: HashMap symbols = new HashMap();
020: symbols.put(new Integer(34), "Double quote");
021: symbols.put(new Integer(37), "Percent");
022: symbols.put(new Integer(38), "Ampersand");
023: symbols.put(new Integer(60), "Less than");
024: symbols.put(new Integer(62), "Greater than");
025: symbols.put(new Integer(162), "Cent");
026: symbols.put(new Integer(163), "Pound");
027: symbols.put(new Integer(169), "Copyright");
028: symbols.put(new Integer(247), "Divide");
029:
030: // Print database or search for requested key
031: if (args.length == 0) {
032: showMap(symbols);
033: } else {
034: int key = Integer.parseInt(args[0]);
035: String value = (String)symbols.get(new Integer(key));
036: if (value == null)
037: System.out.println(key + " not in symbols");
038: else
039: System.out.println(key + " == " + value);
040: }
041: }
042: }

Run the program with no arguments for a complete list of symbols and descriptions. Run
it with a key value to search the database:

java SymbolMap 169
169 == Copyright

Line 019 creates the HashMap container, using Java's default values. As mentioned, you
could specify an initial capacity and load factor by changing the statement to something
like this:

HashMap symbols = new HashMap(50, 0.65);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

289

Lines 020-028 add entries to the container by calling the Map interface's put() method.
This requires two arguments — a key and its associated value. The key's associated value,
in this example, is a string. Notice that you cannot simply pass an integer value as the key
because an integer is not an object. So, to use integer keys, the program creates instances
of the Integer wrapper class with the specified values. (Chapter 9, "Numeric Classes,"
covers the Integer and other wrapper classes.)

Keys and associated values can be any objects of any classes, but the key's class must
provide a hashCode() method. As mentioned, Object provides a default method, but you
may override it and provid e your own if you want.

To search for entries by key, call the Map interface get() method as shown here on line
035. You might have to use a type-cast expression, as in the sample program, because
get() returns Object:

String value = (String)symbols.get(new Integer(key));

The get() method returns null if the key is not found — but be careful. If null is inserted
as a key, then get() returns it. In most cases, however, if you are sure that a null key has
not been inserted into the container, you can consider a null result from get() as an
indication that the key is not in the container; otherwise, call containsKey() before calling
get().

Changing Keys and Values
Because Map containers require all keys to be unique, changing a key's value is a simple
matter of calling put() to insert the new entry. This effectively replaces the old
association with the new one. For example, to change the value of key 37 from "Percent"
to "Percent sign," the program in Listing 17-4 could execute the statement

symbols.put(new Integer(37), "Percent sign");

If the key exists in the database, its value is replaced; otherwise, a new key-value object
is added to the container.

Map Views
One way to access keys and associated values in a Map container is to obtain a Set of its
keys and then use an Iterator object to locate each key-value pair. For example, building
on Listing 17-4, use a statement such as the following to get a set of keys from the
symbols container:

Set keys = symbols.keySet();

That calls the Map interface keySet() method, which returns a Set of the container's keys.

Note

Some programmers new to Java consider the preceding statement to be
in conflict with the rule that interfaces, such as Set, cannot be instantiated
as objects. That's true, but an object of a class that implements Set can be

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

290

accessed via a Set reference. Internally, the HashMap class creates a
customized instance of the AbstractSet class by implementing that
abstract class's methods. This is the real container object that is returned
by keySet(); howeve r, outsiders may use that container only as stipulated
by the Set interface. This provides for highly controlled access to the
container, which can be used by calling only the well-defined methods
stipulated by the Set interface, and that are actually implemented
internally.

Use the keys container returned by keySet() as you do any other Set-based container, as
described in Chapter 16. First, obtain an Iterator object:

Iterator I = keys.iterator();

You can then call the Iterator object's hasNext() and next() methods to browse the
HashMap container's key-value associations:

while (I.hasNext()) {
 Integer key = (Integer)I.next();
 String value = (String)symbols.get(key);
 System.out.println(key + " :: " + value);
}

Because the Iterator accesses the set of keys, I.next() returns each key in succession. In
this case, we know the keys are Integer objects, but the type cast throws
ClassCastException if the actual type of object is not Integer. To obtain each associated
value, the program calls the get() method for the symbols container. Again, a type-cast
expression is used to indicate to the compiler that values in this container are String
objects.

The preceding technique works well enough, but it illustrates just one of countless ways
to access Map containers using differing views — for example, as a Set of keys. A more
sophisticated method provides direct access to the key-value entry objects actually stored
in the container. The next section describes how this works.

Map.Entry Iterators
HashMap containers store keys and associated values as objects of a private, inner class.
The class, to which HashMap users have no direct access, implements the Entry interface,
shown here in Listing 17-5, Map.Entry.txt. This interface is also an inner, nested
declaration in HashMap and for that reason is fully named Map.Entry. The interface is
public, and therefore it provides a controlled means for HashMap users to access key-
value objects in the container.

Listing 17-5
Map.Entry.txt
001: // Map.Entry interface
002: public interface Entry {
003: Object getKey();
004: Object getValue();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

291

005: Object setValue(Object value);
006: boolean equals(Object o);
007: int hashCode();
008: }

There are five methods in the Map.Entry interface, the first three of which provide access
to a HashMap entry's key and associated value and change the value associated with a
key. The equals() and hashCode() methods do their usual jobs. No method is provided to
change a key value itself because of the danger that doing so might destabilize the
container by making two keys equivalent.

Tip

To change a key in a Map container, remove it by calling remove(key) and
then insert a new key-value pair by calling put(). This is safer than merely
attempting to change the key directly.

Refer back to Listing 17-4, lines 007-015, for a typical way to use the Map.Entry
interface to access a HashMap container's contents. I repeat some of that code here for
easy reference. Assuming m refers to any Map-based container, first, obtain an Iterator
using the statement

Iterator I = m.entrySet().iterator();

That calls the Map interface entrySet() method, which returns type Set (see Listing 17-1).
The Iterator object is not provided by Map but rather by the Set interface's iterator()
method. Use that Iterator in the usual way, but with a slight twist:

while (I.hasNext()) {
 Map.Entry entry = (Map.Entry)I.next();
 System.out.println(
 entry.getKey() + "\t:: " + entry.getValue());
}

While I.hasNext() returns true, there is at least one more key-value entry in the container.
To get a reference to that object, call the Iterator object's next() method. However, use a
type-cast expression as shown on the second line to tell the compiler that this is actually a
Map.Entry object. Save the result in a Map.Entry reference variable, here named entry.
Because the Map.Entry interface is declared public in HashMap, the type cast enables the
program to call its methods (see Listing 17-5). For example, entry.getKey() returns the
entry's key object, and entry.getValue() returns its associated value object. Although not
used here, entry.setValue() changes the current entry's value.

Tip

As usual with Iterator objects, always call hasNext() before calling next() to
obtain the next Map.Entry object from a HashMap container to avoid a
NoSuchElementException.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

292

The WeakHashMap Class
The WeakHashMap class stores weak references to keys that are subject to garbage
collection. Although many Java programmers understandably shy away from using any
class with the word "weak" in it, like most concepts, weak references are less mysterious
when you understand them. Especially important is a weak reference's relationship to
Java's garbage collector.

First, however, consider the nature of a strong reference. This is the kind in use for most
class object variables. When a program creates an object as follows, the reference to it is
of the strong variety:

String s = new String("I am very strong!");

As long as the variable s remains in use — that is, as long as it is in scope — it is
untouchable by the garbage collector. However, if that variable is declared local to a
method, when that method returns, the reference is deleted, and the object to which it
refers is subject to garbage collection. The object actually remains in memory until the
garbage collector decides it needs to clean house, usually in response to a lack of
available memory.

Weak references work a little differently. They are references to objects of the
WeakReference class, provided in the java.lang.ref package, that, from birth, are subject
to garbage collection. You can create a weak reference with code such as

import java.lang.ref.WeakReference;
...
Object weak = new WeakReference(new String("I am very weak!"));

I don't recommend actually writing a statement like that — it merely shows the
WeakReference class in use. Because it is weak, the reference is subject to garbage
collection. In other words, if the garbage collector needs more memory than it can obtain
with a normal sweep of unused objects, it may dispose of any weak references it can find.
It will do so, however, only if the weak reference is the only one to an object. Weak
object references have no guaranteed lifespan — they are subject to garbage collection at
any time, and so you must check them before use.

Those facts make weak references suitable for large objects that might be cached in
memory, but reloaded as needed. Your Web browser uses a similar technique to cache
recently visited pages, or at least to store local copies of some of the items on those pages.
When you return to a page, the browser checks whether it has already downloaded an
item such as a large picture, and if so, it uses the local copy. This increases the apparent
speed of the network connection while using memory as efficiently as possible.

A WeakHashMap container stores key values as objects of an internal, private class
named WeakKey that extends WeakReference. Key-value objects in a WeakHashMap
container are therefore subject to garbage collection at any time, and they might be
discarded between the time you insert them and the time you next go looking for a
particular key.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

293

Although there isn't room here to provide a complete sample listing (WeakHashMaps are
practical only in large applications with tremendous memory requirements), as a
hypothetical example, consider using this type of container to store photographic images.
As with other hash-table containers, you have the option of specifying an initial capacity
and load factor:

WeakHashMap pix = new WeakHashMap(500, 0.65);

You can then insert photographic images, perhaps by loading them from disk by way of a
hypothetical Photo class constructor:

pix.add(filename, new Photo(filename));

The filename serves as the entry's key, and the Photo object, the actual image, is the value
inserted into the WeakHashMap container. Loading numerous objects might cause the
garbage collector to throw out some weak references to make room, so it's important to
check whether an object still exists before using it. The following statements are in a
presumed method that returns a Photo object:

Photo p = (Photo)pix.get(filename);
if (p == null) {
 p = new Photo(filename); // Load or reload
 if (p != null)
 pix.add(filename, p); // Cache
}
return p;

Again, all of that is hypothetical, but it shows the basic idea. If get() returns null, you can
assume that the photo image defined by filename either was never inserted into the
container or it has been garbage collected. Either way, the program reloads the photo,
adds it to the cache, and returns the result (which might still be null if the file fails to load
for some reason).

SortedMap Containers
Like Map, the SortedMap interface stipulates methods for storing unique key-value
associations. SortedMap differs from Map in only one significant way — it guarantees
that objects are maintained in key order. This means that objects inserted as keys into a
SortedMap container must be of classes that implement the Comparable interface and
provide a compareTo() method. If that's not possible, however, the container can use a
Comparator object to compare two keys. Because SortedMap extends Map, a SortedMap
container class provides implementations for both interfaces' methods (refer back to
Listings 17-1 and 17-2 for a complete list).

The TreeMap Class
Only one concrete class in the library implements the SortedMap interface, TreeMap,
shown here in Listing 17-6, TreeMap.txt. The class adds only constructors to the method
declarations it receives from the Map and SortedMap interfaces.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

294

Listing 17-6
TreeMap.txt
001: // TreeMap constructors
002: public TreeMap();
003: public TreeMap(Comparator c);
004: public TreeMap(Map m);
005: public TreeMap(SortedMap m);

You can construct a TreeMap container four ways. For a default container, specify no
arguments to the constructor:

TreeMap myTree = new TreeMap();

Because a TreeMap container stores its object keys in a tree-like, reference-linked data
structure, there is no way nor any need to specify an initial capacity, as there is for a
HashMap container. (Except for the TreeMap object itself, the newly constructed
container is completely empty and it uses no other memory.)

If the object keys to be inserted are of classes that do not implement Comparable, you
must use the alternate constructor at line 003 to create the container. The Comparator is
typically returned by a static method in the key's class, resulting in hypothetical code
such as the following:

TreeMap myTree = new TreeMap(KeyClass.byType());

KeyClass represents the class that provides a Comparator method, byType(), which
constructs the actual Comparator to be used in comparing two KeyClass objects.

Tip

For help in writing an actual Comparator object method, see the several
Chart class listings and related discussions in Chapter 15, especially the
section titled "Using Comparators and ArrayList."

Two other TreeMap constructors provide the means to create a new container given an
existing Map or SortedMap object. For example, you might use the following code to
convert a HashMap container to a TreeMap, and in that way sort the hash table by its
keys:

HashMap myMap = new HashMap();
...
TreeMap myTree = new TreeMap(myMap);

Creating a TreeMap Dictionary
One typical use for a TreeMap container is to create a dictionary of words and definitions.
The words are the keys; the definitions are the associated values. Because the TreeMap
class is based on the SortedMap interface, the dictionary is automatically maintained in
alphabetical order. Creating a simple container of this kind is easy — just construct a
TreeMap container and add word and definition strings by calling put(). Find definitions
of words (the keys) by calling get().

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

295

But in a real dictionary, words have multiple definitions. Since a Map or SortedMap
container is limited to unique keys, how can you associate them with multiple entries?
One answer is to create a nested container — in other words, a container that holds
another container as an object. The end result is like a multi-dimensional array but is far
more versatile and, depending on the choice of container classes, may use memory more
efficiently.

To demonstrate how to create a nested container, the next program creates a small
dictionary of words and definitions using TreeMap and LinkedList containers. The
complete program is shown here in Listing 17-7, Dictionary.java.

Listing 17-7
Dictionary.java
001: import java.util.*;
002: import java.io.*;
003:
004: class Dictionary {
005:
006: // Construct TreeMap dictionary container
007: static TreeMap dict = new TreeMap();
008:
009: // Lookup and show definition for the specified word (key)
010: static void showDefinition(String word) {
011: LinkedList defs = (LinkedList)dict.get(word);
012: if (defs == null) return; // Ignore if not there
013: ListIterator L = defs.listIterator();
014: int count = 1; // Definition counter
015: System.out.println("\n" + word);
016: while (L.hasNext()) {
017: String definition = (String)L.next();
018: System.out.println(count++ + ". " + definition);
019: }
020: }
021:
022: // Display entire dictionary
023: static void showDictionary() {
024: Iterator I = dict.keySet().iterator();
025: while (I.hasNext())
026: showDefinition((String)I.next());
027: }
028:
029: // Add a new word and/or definition
030: static void addWord(String word, String definition) {
031: if (dict.containsKey(word)) {
032: LinkedList defs = (LinkedList)dict.get(word);
033: defs.add(definition); // Add new definition only
034: } else {
035: LinkedList defs = new LinkedList(); // New list
036: defs.add(definition); // Add definition to new list
037: dict.put(word, defs); // Add word and defs association

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

296

038: }
039: }
040:
041: public static void main(String args[]) {
042:
043: // Read words and definitions into the container
044: try {
045: FileReader fr = new FileReader("Dictionary.txt");
046: BufferedReader br = new BufferedReader(fr);
047: String word = br.readLine();
048: while (word != null) {
049: addWord(word, br.readLine()); // Add word and definition
050: br.readLine(); // Skip blank line
051: word = br.readLine(); // Read next word
052: }
053: } catch (FileNotFoundException e) {
054: System.out.println("File not found: " + e.getMessage());
055: } catch (IOException e) {
056: System.out.println("I/O error: " + e.getMessage());
057: }
058:
059: // Look up one word or show entire dictionary
060: if (args.length == 0)
061: showDictionary(); // Show all
062: else
063: showDefinition(args[0]); // Show selection
064:
065: } // main
066: } // class

Compile and run the program. If you enter no arguments, it prints the entire dictionary.
Enter a word to find its definition:

java Dictionary ingenuous
ingenuous
1. artless
2. frank

For a source of words and definitions, on disk is a file, Dictionary.txt (also in the
c17/Dictionary directory) that contains entries such as

extant
still existing

ingenuous
artless

supercilious
haughtily disdainful

ingenuous
frank

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

297

In the source text, each word is associated with only one definition. A blank line
separates the string pairs. This simple format makes it easy to add new words without
concern that they are already in the list — simply add them to the end of the file and
rerun the program. Some words have only one definition; others have several. The words
come from a personal list that I've been adding to for years every time I run into a word
that I don't know or that I want to know better (only a small sampling of the full list is on
disk — the real list still uses old -fashioned technology: file cards and a rubber band).

The program begins by reading the source text into a TreeMap container (lines 043-057).
The container, dict, of type TreeMap, is declared and initialized at line 007. Each word
and definition is added to the container by calling a local method, addWord() (lines 030-
039). First, the word is checked by calling containsKey() to see if it is already in the
container. If so, the statements at lines 032-033 call the Map interface get() method to
obtain the value associated with this word. The result is cast to a LinkedList — the nested
container held by each TreeMap entry.

If the word is not already in the container, line 035 creates a new LinkedList container
named defs. The definition string is added to this container, which is then inserted into
the dict TreeMap at line 037. Notice especially that the word string is the key and the defs
LinkedList container is the key's associated value. Thus each word is associated with a
container that might hold one or several definition strings for each key. With nested
containers, you can create some interesting and complex data structures with a minimum
of programming.

Other methods in the program display a single word and list of definitions
(showDefinition() at lines 010-020) and display the entire dictionary (showDictionary() at
lines 023-027). The programming in these methods uses Iterator and ListIterator objects
to search the TreeMap's keys and the LinkedList's string entries. Although the program is
a little more complex looking than other examples you have seen in this part, there's
nothing new here except that, instead of simple values, each key is associated with
another container.

Summary
* A map, or associative container, stores unique keys and their associated values.

* The Map interface stipulates the most common methods of associative containers.
The SortedMap interface extends Map and provides additional methods suitable
for an associative container maintained in key order.

* Two concrete classes implement the Map interface: HashMap and WeakHashMap.
Each uses hash values to store keys and their associated values. HashMap is an
excellent choice of containers when the order of objects is not important.

* The WeakHashMap class stores weak references to keys and associated values
that are subject to garbage collection from the time they are inserted into the
container. This makes WeakHashMap containers suitable for use as memory
caches — for example, to maintain a database of photos but permit the garbage
collector to delete some references if necessary to make room.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

298

* The concrete class TreeMap implements the SortedMap interface. This container
maintains its entries sorted by keys and is suitable for containers such as
dictionaries.

* As this chapter's Dictionary program demonstrates, a container can be nested in
another — for example, using a LinkedList as the value associated with a key in a
TreeMap container. Storing containers as objects in other containers is a powerful
technique that can create complex data structures with a minimum of
programming.

Chapter 18 Utilities and Legacy Classes

As mentioned throughout the preceding chapters, the Collections utility class provides
numerous methods and a few other items that are invaluable for container library
programming. In the preceding chapters, you already met some of this class's methods
such as sort() and binarySearch(). This chapter lists all Collections declarations and
explains how to use many of them.

Covered also in this chapter are the BitSet class and other Java legacy container classes,
which are still supported but no longer recommended for use in new code. Although
some texts consider BitSet to be a legacy container, you may find it useful especially
because no other Java class provides similar bit-twiddling capabilities. Also, the Vector
legacy class is still in popular use.

In This Chapter

* Putting the Collections class to use

* Seaching and sorting with Collections

* Creating thread-safe containers

* Legacy containers and their replacements

* Manipulating bit values with the BitSet class

The Collections Class
The Collections class provides numerous utility methods that operate on containers based
on the Collection interface. Listing 18-1, Collections.txt, shows all of the class's public

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

299

declarations. Keep in mind that the Collections class is plural — the Collection interface
is singular.

Listing 18-1
Collections.txt
001: // Sorting and searching methods
002: public static void sort(List list);
003: public static void sort(List list, Comparator c);
004: public static int binarySearch(List list, Object key);
005: public static int binarySearch(List list,
 Object key, Comparator c);
006:
007: // Unmodifiable wrappers
008: public static Collection unmodifiableCollection(Collection c);
009: public static Set unmodifiableSet(Set s);
010: public static SortedSet unmodifiableSortedSet(SortedSet s);
011: public static List unmodifiableList(List list);
012: public static Map unmodifiableMap(Map m);
013: public static SortedMap unmodifiableSortedMap(SortedMap m);
014:
015: // Synchronized wrappers
016: public static Collection synchronizedCollection(Collection c);
017: public static Set synchronizedSet(Set s);
018: public static SortedSet synchronizedSortedSet(SortedSet s);
019: public static List synchronizedList(List list);
020: public static Map synchronizedMap(Map m);
021: public static SortedMap synchronizedSortedMap(SortedMap m);
022:
023: // Miscellaneous operations
024: public static void reverse(List l);
025: public static void shuffle(List list);
026: public static void shuffle(List list, Random rnd);
027: public static void fill(List list, Object o);
028: public static void copy (List dest, List src);
029: public static Object min(Collection coll);
030: public static Object min(Collection coll, Comparator comp);
031: public static Object max(Collection coll);
032: public static Object max(Collection coll, Comparator comp);
033:
034: // Other declarations
035: public static final Set EMPTY_SET;
036: public static final List EMPTY_LIST;
037: public static final Map EMPTY_MAP;
038: public static Set singleton(Object o);
039: public static List singletonList(Object o);
040: public static Map singletonMap(Object key, Object value);
041: public static List nCopies(int n, Object o);
042: public static Comparator reverseOrder();
043: public static Enumeration enumeration(final Collection c);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

300

Note

Line numbers mentioned in the following five sections refer to Listing 18-1.

Searching and Sorting Methods
The two sort() and binarySearch() methods (lines 002-005) sort and search List-based
containers. For more information on these methods, see Chapter 15, "List Collections," in
the sections "Sorting LinkedList Containers" and "Binary Search Method."

Sorting and searching methods are not needed for other types of containers because
classes based on SortedSet and SortedMap interfaces automatically maintain their objects
in sorted order. However, if you need to sort another type of container for some reason,
you can convert it to a List and pass it to one of the Collections sort() methods. You
could then also call binarySearch() to search the container's objects.

Unmodifiable Wrappers
Containers normally provide read and write access to their objects. But in some cases,
especially in class library code, it might be necessary to provide read-only containers. For
instance, a class in a library might return a list of internal settings for reference purposes
but disallow modifications to that list.

To create a read-only container, use one of the unmodifiable wrapper methods shown at
lines 008-013. There's one method for each interface: Collection, Set, SortedSet, List,
Map, and SortedMap. Each method returns an unmodifiable view of a container
referenced by its interface type.

To use one of these methods, first create the normal container, and add objects to it. As
an example, the following constructs a HashSet container and then inserts some
programming words from the Pascal programming language:

HashSet hashtable = new HashSet(100, 0.65f);
hashtable.add("begin");
hashtable.add("end");
hashtable.add("procedure");
hashtable.add("function");

The program might allow users to view the list of words, but not add new ones or make
any other changes. To ensure its proper use, the program creates an unmodifiable Set
using code such as

Set readonly = Collections.unmodifiableSet(hashtable);
readonly.add("dowhile"); // ???

The readonly set offers a new view of the original container's contents — the objects are
not cloned — but the new container cannot be modified in any way. Attempts to do so as
shown here by calling add() throw UnsupportedOperationException. Methods such as
contains() that do not modify the container work normally. Users are also prevented from

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

301

casting the unmodifiable set back to one that can be changed. The following throws
ClassCastException:

HashSet cheater = (HashSet)readonly; // ???

It is possible to use an unmodifiable container to create a new one that can be modified.
Passing the unmodifiable container to a container class constructor may seem to subvert
the read-only restriction:

HashSet cheater = new HashSet(readonly);
cheater.add("goto"); // !!!

However, the original readonly container remains unchanged and unmodifiable, although
the new cheater container can be modified.

Synchronized Wrappers
Lines 016-021 show the Collections class's synchronized wrappers. Normally, containers
are not thread-safe — that is, statements in threaded code cannot use them safely.
Wrapping a container using one of Collections's synchronized methods results in a
container that is thread-safe.

Chapter 19, "Threaded Code," discusses in more detail how to write threaded Java
programs. In such programs, to use one of the synchronized methods, first construct the
container and add some objects to it:

TreeSet myTree = new TreeSet();
myTree.add("Apple");
myTree.add("Banana");
myTree.add("Cherry");

The myTree container is not thread-safe. To make it so, pass it to one of the Collections
class's synchronized methods:

Collection safe = Collections.synchronizedCollection(myTree);

Note carefully the spellings — the safe reference variable is of the Collection (singular)
interface type. The method is called in reference to the Collections (plural) utility class.
You may now use the safe reference in synchronized code. For example, the following
uses an Iterator to pass each object in the container to a method f() (not shown):

Collection safe = Collections.synchronizedCollection(myTree);
synchronized(safe) {
 Iterator I = safe.iterator();
 while (I.hasNext())
 f(I.next());
}

When using synchronized containers, there are two important details to keep in mind.
One, iterations such as in the preceding example must be executed in a synchronized
block. Two, the original container used to create the synchronized view must never be
used. It might be okay to perform read-only operations on the original container, but as a
general rule, after constructing the synchronized view, in threaded code, the program
should use only the synchronized view to gain access to the container's objects.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

302

Miscellaneous Operations
The Collections class provides a number of miscellaneous List and Collection operations
that might be useful from time to time (see lines 024-032). It's a good idea to at least be
aware of these methods so you don't waste time duplicating them needlessly.

As mentioned in Chapter 15, List-based containers maintain their objects in the order in
which they are inserted. To reverse that order, call the reverse() method as follows:

LinkedList myList = new LinkedList();
// add object to myList
Collections.sort(myList);
Collections.reverse(myList);

As shown here, the container is typically sorted before calling reverse() in order to obtain
a reverse ordering of the container's objects.

To scramble a List container's objects, call one of two shuffle() methods. The first takes a
single List argument; the second adds a Random parameter to perform the shuffling. (See
Chapter 9, "Numeric Classes," for how to use the Random class.) The following
programming fragment uses the second method to shuffle a LinkedList container:

import java.util.Random;
...
LinkedList myList = new LinkedList();
// add objects to myList
Collections.shuffle(myList, new Random());

You might call a shuffle() method to test a sorting algorithm's performance, or to prepare
test data for feeding to other methods. The shuffle() methods might also be handy in
applet and game programming. Another useful method fills a List with objects. First
construct a List container and add some objects to it:

LinkedList myList = new LinkedList();
myList.add("Apple");
myList.add("Banana");
myList.add("Cherry");

Call fill() to fill the container with any other object. For example, this sets the three string
objects in myList to null:

Collections.fill(myList, null);

Calling fill() does not add new objects to a List container. It replaces the container's
existing object references with the one specified. If the original container has three
objects, then the preceding statement replaces their references with null. The resulting
container still holds three objects. Following a call to fill(), you can use a ListIterator's
set() method to insert new objects into the list.

Tip

See the nCopies() method in the next section for a way to grow a List to a
predefined size. The fill() method is not intended for that purpose.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

303

To copy one List container to another, call the copy() method and pass it the destination
and source lists in that order:

ArrayList L1 = new ArrayList();
ArrayList L2 = new ArrayList();
// add objects to L1 and L2
Collections.copy(L2, L1); // L2 <–– L1

That copies all objects from L1 to L2. Although simple in appearance, the copy() method
requires careful handling to use properly. Copied objects are not cloned; only their
references are duplicated in the destination list. The destination list (L2 here) must be at
least as large as the source list (L1) — the destination is not expanded automatically. If
the destination list is larger than the source, remaining objects in the destination are
undisturbed. If the destination is not large enough to hold all objects from the source,
IndexOutOfBoundsException is thrown. In addition, the destination list class's
ListIterator must support the set() method, or UnsupportedOperationException is thrown.

Finally in the miscellaneous category are four overloaded min() and max() methods that,
as their names suggest, find the minimum and maximum objects in any Collection-based
container (see lines 029-032). The collection does not need to be sorted. Each method has
two versions. The first takes as a single argument the container to search:

if (!myList.isEmpty())
 String s = (String)Collections.min(myList);

Use max() similarly. Always check whether the container is empty because, if it is, min()
and max() throw NoSuchElementException. Also, the type-cast expression is usually
necessary because min() and max() return Object. In this case, the returned object must
be a String, or a ClassCastException is thrown. That same exception is thrown if the
container objects are not comparable. In such cases, you can pass a Comparator object to
min() and max() to use in comparing the container objects. Again, always check first
whether the container is empty to avoid an exception. Borrowing the Chart class from
Chapter 15, the following code locates the chart having the maximum scale value:

if (!myList.isEmpty())
 Chart c = (Chart)Collections.max(myList, Chart.byScale());

For both min() and max(), in case of any duplications in an unsorted container, the one
returned is the first one located in the order in which the list was created.

Other Declarations
Finally in the Collections utility class are several other declarations that appear to have
been thrown in for good measure (see lines 035-043).

Three declarations, EMPTY_SET, EMPTY_LIST, and EMPTY_MAP, provide
immutable Set, List, and Map containers respectively that have no contents. As their
capitalized names suggest, these objects are static and final constants. One possible use
for them is as return values from methods that return references to newly constructed
containers. Instead of returning null in cases where the container is empty or cannot be

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

304

constructed for some reason, the method can return one of the constants and in that way
not require the method's callers to test for a null result.

Three other methods return singleton Set, List, and Map containers containing only one
object. For example, this creates a singleton List with one string:

List L = Collections.singletonList("One and only");

The container is guaranteed to contain only one object — no new objects can be added to
it, nor removed from it. The methods are primarily useful when you want to call a method
that requires a container argument, but you have only a single object to pass to that
method. In that case, wrap your object around a singleton method and use it as the
argument. By the way, the Set method is named singleton(). The other two are named
singletonList() and singletonMap(). There is no singletonSet() method.

When you need to create a List of a certain size, call the nCopies() method. Pass two
arguments: an integer representing the desired list size, and the object to copy into the lis t.
Save the result as a List reference:

List L = Collections.nCopies(10, "Place holder");

That constructs a List container with 10 references to the string "Place holder". Each
entry in the container refers to the same string or other object specified as the second
argument to nCopies(). The objects are not duplicated. Because nCopies() returns type
List, you may call that interface's methods to operate on the container. However, you
probably want to treat the result as an object of a concrete class such as LinkedList. To do
that, call the addAll() method to add the List to your container. Given the preceding
statement, this creates a new LinkedList preset to 10 objects:

LinkedList copy = new LinkedList();
copy.addAll(L);

That's the proper way to create a List container of a specific size. Normally, List
containers expand and shrink for each object added and removed. Given the preceding
call to nCopies(), the new container, copy, now holds 10 references to the string "Place
holder".

One obscure, but surprisingly useful, Collections method, reverseOrder(), returns a
reverse Comparator object. This method exists primarily to make it easier to sort a
Collection-based container in the reverse of its natural ordering. To do that without this
method, you have to perform steps such as these:

 1. Call Collections.sort() for the container.

 2. Call Collections.reverse() to reverse the object order (if the container is a List), or
access the objects in reverse order, or write custom code to reverse the sorted
container.

The reverseOrder() method simplifies those steps into one. Use it like this:

Comparator reverse = Collections.reverseOrder();
Collections.sort(myList, reverse);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

305

You don't need to save the Comparator object as shown here — you can pass the
method's result directly to sort(). Although the code is seemingly simple, the use of a
Comparator object in this fashion is unusual. Normally, as mentioned several times
throughout this part of the book (especially in Chapter 15), a Comparator object is used
when a container's objects are not directly comparable. In this case, however, the
Comparator object that reverseOrder() returns imposes a reverse ordering on objects
whose classes implement the Comparable interface and provide a compareTo() method.
If the objects are not comparable, reverseOrder() throws ClassCastException.

Finally in the Collections utility class is the method enumeration() (line 043). Pass to it
any Collection-based container and save the result as an Enumeration reference:

Enumeration E = Collections.enumeration(myList); // ???

The only reason to call this method is to support older code that uses one of the legacy
container classes discussed in the next section. (An Enumeration is similar to an Iterator.)
For example, if you must call a library method that requires an Enumeration argument,
you can use this technique to obtain one for a newer Collection-based container. However,
new code should use Iterator and ListIterator objects in place of Enumeration.

Tip

Because the enumeration() method requires a Collection-based container
argument, it cannot be used directly with classes that implement the Map
interface. If you must get an Enumeration object for a Map container, call
one of the Map view methods keySet(), values(), or entrySet(), and pass
the result to enumeration().

Legacy Containers
Container classes based on the Collection and Map interfaces and their derivatives are
relatively new additions to Java. Past versions of the java.util package provided several
similar container classes, which unlike the newer classes were not as well organized nor
as versatile. The older legacy containers listed here should no longer be used in new code.
In alphabetic order, the legacy containers and their suggested replacements are

* Dictionary — Use a Map container such as TreeMap

* Enumeration — Use an Iterator or ListIterator object

* Hashtable — Use the HashMap or HashSet classes

* Properties — Use the HashMap class

* Stack — Use a LinkedList or ArrayList class

* Vector — Use the ArrayList class

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

306

Although Java 2 continues to support these legacy containers, not all older code that uses
them compiles. Some techniques that worked with the JDK 1.0 — for example, code that
uses HashTableEnumerator, which no longer exists — do not work at all in Java 2.
Support for legacy containers is provided because of their extensive use in existing code,
but you should never use the preceding classes in new programs.

Note

Unlike other legacy classes that are unrelated to the newer collection
containers, the Vector class extends AbstractList and implements List,
Cloneable, and java.io.Serializable — similar in design to the newer
container class ArrayList. Vector might therefore be considered a member
of the newer collection containers, but it is not synonymous with ArrayList.
Most important, Vector is safe for use in threaded code because the
class's methods are synchronized. The same is not true of ArrayList. To
use an ArrayList container in threaded code, you must create a
synchronized view of the container by calling synchronizedList() in the
Collections utility class (see "Synchonized Wrappers" in this chapter).

BitSet Containers
The java.util package provides the BitSet class for storing and manipulating bit values.
You might find the class handy for keeping true and false values compressed into single
bits, or you might use it for bit-wise boolean-logic code. Listing 18-2, BitSet.txt, shows
the declaration of the BitSet class.

Listing 18-2
BitSet.txt
001: // BitSet constructors
002: public BitSet();
003: public BitSet(int nbits);
004:
005: // BitSet methods
006: public int length();
007: public void set(int bitIndex);
008: public void clear(int bitIndex);
009: public void andNot(BitSet set);
010: public boolean get(int bitIndex);
011: public void and(BitSet set);
012: public void or(BitSet set);
013: public void xor(BitSet set);
014: public int hashCode();
015: public int size();
016: public boolean equals(Object obj);
017: public Object clone();
018: public String toString();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

307

Note

As mentioned, some texts include the BitSet class among Java's legacy
containers (see the preceding section). However, BitSet does not extend
any other legacy classes, and it provides useful techniques that are not
available through any other Java classes. For that reason, I consider
BitSet to be a viable utility class with plenty of life remaining. Others may
disagree.

Technically, the BitSet class implements a vector of single bits — but it is not based on
Vector or any other class. A module that uses the BitSet class can import it from the
java.util package using the statement

import java.util.BitSet;

A BitSet container grows as needed to accommodate additional bits, but in most cases,
you should construct the container of the size you need. Here are two ways to create a
BitSet object:

BitSet setOfBits = new BitSet(16);
BitSet secondSet = new BitSet();

The first and most common form specifies the number of bits to store in the BitSet
container. The second form constructs a default empty BitSet object. All bits in non-
empty containers are initially set to false. Internally, BitSet containers store data in the
individual bits of an array of long integer variables. Consequently, there is no practical
limit on the number of bits that a BitSet container can store.

Tip

Specifying a negative size when constructing a BitSet container throws
NegativeArraySizeException. When using a variable to construct BitSet
containers, avoid this exception by verifying that the value is not negative.

Bits in a BitSet container are indexed starting with zero. Set a particular bit to true by
calling set() like this:

setOfBits.set(5); // Set bit 6 true

Clear a bit, setting it to false, by calling clear():

setOfBits.clear(3); // Set bit 4 false

Calling set() or clear() with an index value greater than or equal to the BitSet's current
length automatically allocates more memory to the container.
IndexOutOfBoundsException is thrown if the specified index is negative. If the index is
greater than the container's current size, the container is expanded. Use that fact to
expand a BitSet object with a statement such as
secondSet.clear(64); // Expand to 64 bits

There is no way to reduce the size of a BitSet except by re-creating it. To obtain the value
of a particular bit, call the get() method:

if (setOfBits.get(5))

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

308

 System.out.println("Bit 6 is true");

The get() method throws IndexOutOfBoundsException if the index is negative.

You may combine BitSet containers using AND, OR, and XOR (exclusive-OR) Boolean
logic. These methods are declared as follows, and they are used as their names suggest:

public void and(BitSet set);
public void or(BitSet set);
public void xor(BitSet set);

Note

By convention, the uppercase words, AND, OR, and XOR, and the
capitalized word Boolean refer generally to logical operations — they are
not Java programming words. The preceding three BitSet methods are
spelled in all lowercase, as is the Java boolean data type.

Pass a BitSet container to one of these methods, called in reference to the destination
BitSet that you want to alter according to the specific Boolean operation. Listing 18-3,
BitSetDemo.java, demonstrates how to do this using the xor() method.

Listing 18-3
BitSetDemo.java
001: import java.util.BitSet;
002:
003: class BitSetDemo {
004: // Display string and value of BitSet object
005: public static void show(String s, BitSet obj) {
006: System.out.println(s + obj.toString());
007: }
008: // Main program tests BitSet Boolean logic
009: public static void main(String args[]) {
010: // Construct two BitSets
011: BitSet set1 = new BitSet(16);
012: BitSet set2 = new BitSet(16);
013: // Set bits 2, 4, and 8 in set 1
014: set1.set(2); set1.set(4); set1.set(8);
015: // Set all bits in set 2
016: for (int i = 0; i < set2.size(); i++)
017: set2.set(i);
018: // Test Boolean logic and show results
019: show("before XOR set1 = ", set1);
020: set1.xor(set2);
021: show("after XOR set1 = ", set1);
022: set1.xor(set2);
023: show("after XOR set1 = ", set1);
024: }
025: }

The sample program constructs two 16-bit BitSet containers. It sets the first container's
bits 2, 4, and 8 to true and also sets all bits in the second container using a for loop along

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

309

with the BitSet size() method to determine how many bits the set contains. Two calls to
the xor() method then demonstrate one of the principles of Boolean XOR logic: XORing
(exclusive ORing) any bit value with 1 twice in succession returns the original value. In
other words, the xor() method works as a bit toggle. The sample program's show()
method proves this by displaying

before XOR set1 = {2, 4, 8}
after XOR set1 = {0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63}
after XOR set1 = {2, 4, 8}

The first line shows that the first set's bits 2, 4, and 8 are true. The next several lines show
the results of XORing this set with another set with all bits equal to true. The final line
shows that repeating the XOR operation restores the first set's original values.

To display the BitSet contents, the sample program calls the BitSet class's toString()
method using this statement:

System.out.println(s + obj.toString());

This provides a handy way to display the values of any BitSet. The resulting string shows
the index values of all true bits, delimited with braces.

Summary
* The Collections class provides numerous utility methods and a few other

declarations that are valuable for container programming.

* Remember that the Collections class name is plural. The Collection interface, on
which Set and List containers are based, is singular. The two names are easily
confused.

* Java's legacy container classes are similar to the newer ones detailed in this part's
chapters. Although still supported, legacy containers should not be used in new
code. The legacy Vector class, however, remains popular and is suitable for use in
threaded code. The similar ArrayList class is not synchronized. To use ArrayList
in threaded code, you must call the Collections method synchronizedList() to
create a thread-safe view of the container.

* The BitSet container, which some texts, but not this one, consider to be a member
of the legacy group, stores bit values and provides bit-wise Boolean logic
operations AND, OR, and XOR (exclusive OR).

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

310

Chapter 19 Threaded Code
A thread is a process that runs independently of other processes. Although you don't have
to use threads in writing Java programs, threads provide advantages that are difficult to
achieve in their absence. Some possible uses for threaded applications include printing in
the background, implementing parallel algorithms, programming multi-user databases,
and loading and displaying large graphics images and animations without disrupting user
actions such as entering text into input fields.

Learning how to write threaded code requires learning some new terms and concepts. The
following sections introduce threaded programming in general. After that, you learn how
to apply these concepts using Java threaded-code techniques. The chapter ends with a
complete demonstration of threaded programming.

In This Chapter

* Thread concepts and terminology

* Extending the Thread class

* Implementing the Runnable interface

* Synchronizing threads with object locks

* A client-server threaded model

Concepts of Threaded Programming
If you could sew a line through the instructions of a program, the thread would follow the
code's sequence of execution. A threaded application has two or more such lines, each
identifying separately executing code sequences that weave in and out of each other like
the threads and warps on a loom.

Every Java application is already threaded. The Java virtual machine executes an
application in a separate thread, and the virtual machine's garbage collector, which frees
memory occupied by unused objects, runs in the background in another thread. A
program can also spawn multiple threads to perform operations in the background,
foreground, and anywhere in between. To control relative activity among threads, you
may specify a thread's priority level. Threads having highest priority get first crack at
system resources; those with lower priorities operate in the shadows of more critical tasks.

Note

Because Java code is interpreted, it can execute multiple threads by time-
slicing on a single-tasking processor, or on more sophisticated hardware,
by spawning tasks that are handled on the operating system and
processor levels. These facts mean that threaded code can run on single-

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

311

processor machines, but it can also take advantage of those with multiple
processors. However, these are implementation details that are
unimportant to application developers. If the Java interpreter is
programmed correctly, threaded code runs similarly on any platform, from
the simplest single-tasking systems to sophisticated multitasking operating
environments.

A Few Good Terms
Threaded programming comes with its own terminology that you need to understand
before you can make good use of the involved techniques. Following are some terms and
related concepts you need to know to understand the programming examples in this
chapter:

* Daemon — A daemon thread is one that does not have to die in order for the
application to end. Specifically, the Java virtual machine exits when all non-
daemon threads, also called user threads, have terminated. An executing thread
cannot be changed to a daemon.

* Deadlock — This is a serious condition that occurs when two threads are waiting
simultaneously to obtain a lock on each other's objects, and therefore neither
thread is able to continue. The result is a hung program. Avoiding this deadly
condition requires careful programming.

* Lock — All objects provide a lock that synchronized code can obtain, and in
doing so, be guaranteed safe access to the object. Only the thread that owns an
object's lock is allowed to access that object. Other threads that need the same
object are blocked from continuing until the thread that owns the lock releases it.

* Monitor — This is just another term for a lock on an object. A thread that obtains
a lock on an object is said to own the object's monitor.

* Multitasking operating system — This is generally defined as an operating system
that can run multiple programs or other processes simultaneously. A multitasking
operating system also typically provides protected memory so that errant code in
one process cannot destroy the code and data in another. Java's threads do not
require, but can take advantage of, an operating system's multitasking capabilities.
However, this is the job of the Java virtual machine, of which there are many
implementations, some better than others. In any case, because Java does not use
pointers to address memory, and because all memory allocations are internally
controlled, even in a single-tasking environment, it is next to impossible for a
Java program to overstep its assigned memory boundaries.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

312

* Threaded application — This refers to a program that runs two or more
concurrent threads, each given a priority level that defines relative access to
system resources. In Java, a thread is an object — usually an instance of the
Thread class. However, it is also possible to create threads by implementing the
Runnable interface. This chapter explains both techniques.

* Race condition — This is a serious problem that occurs when two or more threads
make changes to the same object without obtaining a lock on that object. The
result is at best the loss of information, and at worse, a seriously unstable system.
Java's Thread class and Runnable interface provide the means to avoid race
conditions. If you follow Java's rules for writing threaded code, you should never
experience this problem.

* Sleep — This term refers to the state of a thread that is temporarily inactive. The
thread awakens after a specified amount of time passes. A thread may sleep
regardless of whether it owns a lock on an object. Unlike waiting, sleeping does
not release the object's lock (if any). See also Wait.

* Synchronized code — Because of the potential for interactions among threads, it
is frequently necessary to synchronize thread activity through the use of object
locks. This protects data from being altered inappropriately by one thread while
that same data is in use by another part of the program. Java permits specific
regions, even single statements, to be synchronized, a fact that improves
performance by allowing other non-critical code to run in unsynchronized fashion.

* Thread — A thread is the sequence of execution in a program's instructions. In a
threaded application, each thread's individual instructions execute as though
interspersed with one another. Once started, a thread can pause in its execution by
sleeping or waiting. Once terminated, however, a thread cannot be restarted.
When all threads that are not daemons end, the Java virtual machine exits.

* Thread scheduler — Internal to the Java virtual machine, the thread scheduler
determines which threads run and for how long. Few guarantees are given
concerning how the thread scheduler makes its decisions. For example, in some
cases, regardless of a thread's priority, the scheduler may allow a thread to run
only up to a certain maximum amount of time before it is paused and another
thread is given a chance to execute.

* Wait — This term refers to the state of a thread that is waiting for notification
from another thread. A thread may wait only if it owns its object's lock. While
waiting, that lock is released so that other threads may have access to the object.
To continue executing a waiting thread, another thread typically changes a
condition such as a boolean state flag and then notifies waiting threads to wake up
and check that condition. The technique of waiting in threads is essential for top
performance because it avoids wasteful polling instructions that repeatedly test
for a condition to become true, using up machine cycles that could be utilized by
other tasks.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

313

And a Few Good Classes
As with all Java techniques, programming with threads makes use of one or more classes,
and one interface, most of which this chapter explores in detail. The key classes in thread
programming, in rough order of importance, are

* Thread — Used to construct an individual thread. Constructing an object of this
class and calling its start() method creates a separately executing thread. However,
if your class does not override any Thread methods, you can more simply achieve
the same results by implementing the Runnable interface.

* Runnable — Used by an implementing class to construct an individual thread,
with the same results as instantiating the Thread class, but without requiring your
class to extend Thread. Using the Runnable interface is appropriate when you
don't need to override any Thread class methods; otherwise, building your class
on Thread is necessary.

* ThreadGroup — Used to create thread sets, arranged in a tree-like hierarchy. All
threads are members of a ThreadGroup. Among other services, ThreadGroup
provides a strong reference to thread objects so they are not garbage-collected in
case the program doesn't maintain a reference to its thread objects. ThreadGroup
also provides a measure of security to applications. For example, threads may
spawn new threads only within their own group; to spawn a thread in another
group requires approval from a security manager object.

* ThreadDeath — This is an exception thrown by the now deprecated Thread.stop()
method, which should no longer be used. The original intention of stop() and
ThreadDeath was to provide an orderly way to terminate a thread; however, in
practice, the technique can cause damage to objects by leaving them unprotected.
There are better ways, described in this chapter, to terminate threads.

* InterruptedException — This exception is thrown for a Thread object that is
waiting or sleeping and is interrupted by another thread by a call to the
Thread.interrupt() method. A Runnable or Thread class must catch and respond to
this exception to provide for an orderly shutdown of a thread.

* IllegalMonitorStateException — This exception is thrown if a thread attempts an
operation such as waiting when the thread does not own its object's lock (monitor).
The most common cause of this exception is attempting to call wait() in a run()
method. See “Client-Server Threaded Code” in this chapter for examples of how
to avoid receiving this exception.

* IllegalThreadStateException — This exception is thrown if a Thread object
attempts an illegal operation — for example, attempting to start a thread that is
already running, or trying to change a user thread into a daemon. If you receive
this exception, revising the code is the only cure.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

314

Programming Threaded Applications
There are two basic ways to create a threaded application, although there are many
variations. The first and most common technique is to extend the Thread class, provided
in the java.lang package. Here's how to begin:

class Background extends Thread {
 public void run() {
 // statements that do the thread's work
 }
}

The class also probably needs a constructor, variables, and various methods, but that's the
basic design. Most important is the run() method, which performs the thread's activity. To
create the thread and start it running, instantiate the class and call the start() method,
inherited from Thread For example, the program's main() method (or another method)
might execute statements such as

Background background = new Background();
background.start();

Calling start() prepares the thread object for running, and it hands the new thread to the
virtual machine's thread scheduler. Soon after the call to start(), the thread scheduler calls
the thread object's run() method, which performs the thread's activities. When run() ends,
so does the thread.

Tip

Never call run() directly for a thread object — that's the scheduler's job.

The second technique is to implement the Runnable interface. This is the simplest method
if you don't need to override any methods inherited from Thread. The end results are
identical; only the programming techniques differ. Design the class like this:

class Background implements Runnable {
 public void run() {
 // statements that do the thread's work
 }
}

Again, a constructor, variables, and other methods are probably needed, but that's the
basic design. The run() method is the same as before, and it can do the same types of
tasks. However, creating the thread object and starting it running are a little different.
There are different ways to proceed. Here's one:

Background background = new Background();
Thread theThread = new Thread(background);
theThread.start();

After constructing the Background object, construct an instance of the Thread class by
passing background to the Thread constructor. Call the start() method as shown for the
Thread object. This prepares the new thread and instructs the thread scheduler to call the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

315

Background object's run() method. Because there's usually no reason to save the Thread
object's reference, you can shorten the foregoing code by one statement:

Background background = new Background();
new Thread(background).start();

Those who relish terse code can reduce that even further to the single statement:
new Thread(new Background()).start();

Note

Extending the Thread class adds a lot of excess baggage to a class, and
for that reason, implementing the Runnable interface is preferred. The
only reason to extend Thread is to override an inherited method other than
run().

The Thread Class
Before learning how to extend the Thread class and write a run() method, it's a good idea
to become generally familiar with the Thread class's fields, constructors, and public
methods. Listing 19-1, Thread.txt, lists Java's Thread class public declarations. The
Thread class implements the Runnable interface (see "Implementing the Runnable
Interface" later in this chapter).

Listing 19-1
Thread.txt
001: // Public fields
002: public final static int MIN_PRIORITY = 1;
003: public final static int NORM_PRIORITY = 5;
004: public final static int MAX_PRIORITY = 10;
005:
006: // Constructors
007: public Thread();
008: public Thread(Runnable target);
009: public Thread(ThreadGroup group, Runnable target);
010: public Thread(String name);
011: public Thread(ThreadGroup group, String name);
012: public Thread(Runnable target, String name);
013: public Thread(ThreadGroup group, Runnable target, String name);
014:
015: // Public methods
016: public static native Thread currentThread();
017: public static native void yield();
018: public static native void sleep(long millis);
019: public static void sleep(long millis, int nanos);
020: private void init(ThreadGroup g, Runnable target, String name);
021: public synchronized native void start();
022: public void run();
023: private void exit();
024: public void interrupt();
025: public static boolean interrupted();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

316

026: public boolean isInterrupted();
027: public final native boolean isAlive();
028: public final void setPriority(int newPriority);
029: public final int getPriority();
030: public final void setName(String name);
031: public final String getName();
032: public final ThreadGroup getThreadGroup();
033: public static int activeCount();
034: public static int enumerate(Thread tarray[]);
035: public native int countStackFrames();
036: public final synchronized void join(long millis);
037: public final synchronized void join(long millis, int nanos);
038: public final void join();
039: public static void dumpStack(); // debugging only
040: public final void setDaemon(boolean on);
041: public final boolean isDaemon();
042: public final void checkAccess();
043: public String toString();
044: public ClassLoader getContextClassLoader();
045: public void setContextClassLoader(ClassLoader cl);
046:
047: // Deprecated methods –– DO NOT CALL!
048: public final void stop();
049: public final synchronized void stop(Throwable obj);
050: public final void suspend();
051: public final void resume();

As you can see, the Thread class provides numerous declarations. Rather than tediously
describing them all, I'll briefly touch on some of the more important items here, and
cover many of the others as needed to explain the chapter's sample programs.

Note

Three Thread methods — stop() (two overloaded versions), suspend(),
and resume() at lines 048-051 — have been deprecated, and Sun warns
us never to call them. These methods are unsafe because they can allow
threads to access objects in unprotected ways, causing information loss,
or they can result in deadlock conditions. This chapter explains the correct
ways to start, stop, and resume waiting and sleeping threads. Never call
the deprecated methods. They are included in the Thread class strictly to
support older code.

Three static fields specify the minimum, default, and maximum priority levels that a
Thread object can have (see lines 002-004). Priorities range from 1 to 10 and are
normally set in the middle at 5. You can inspect a thread's priority by calling getPriority().
Change a thread's level by calling setPriority(). Threads with higher priorities are
supposed to get preferential treatment when it comes to accessing system resources, but
regardless of priority, there is no guarantee that a thread will get any specific amount of
operating time.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

317

It may be dangerous to use the extreme high and low priority settings. If a thread's
priority is set to the maximum, other threads may suffer in performance. If a thread's
priority is too low, it may barely run. In most cases, priorities should be set to
NORM_PRIORITY (the default), or values close to that constant (for example,
NORM_PRIORITY + 1).

You can construct Thread objects in numerous ways (see lines 007-013). Sample
programs in this chapter show how to use the class's constructors, some of which permit
you to name the thread using a string of your choosing. To inspect a thread's name, call
getName() (line 031). To set its name, call setName() (line 030).

Note

To identify threads, you may assign them unique names at construction or
by cal ling setName(). Threads are required to have string names, even
though the thread scheduler makes no use of them. If you don't specify a
thread's name, Java assigns one for you. The default name is probably,
but not necessarily, the object's class name and reference address.

Start a Thread object by calling its start() method. This gives the thread object to the
scheduler, which calls run() (see lines 022-023). (Don't call run() directly.) Regardless of
whether your class extends Thread or implements Runnable, you must call start() to start
the thread running.

Put a thread to sleep for a specified amount of time by calling one of two sleep() methods
(lines 018-019). You may specify the amount of sleep time in milliseconds, or in
milliseconds and nanoseconds. Actual time spent sleeping may differ from the amount
specified, depending on how the thread scheduler is implemented, and possibly by other
system characteristics. The thread does not have to own a lock on the object for which the
method that uses sleep() was called. But if the thread owns the lock, the object remains
locked while the thread sleeps. In that case, the only way to wake up the thread is for
another thread to call Thread.interrupt().

Note

Never call the deprecated resume() method to wake up a sleeping thread.
Like dogs, sleeping threads should be left alone.

You may tell a thread to yield to other threads by calling yield(). This might be done in
time-consuming loops to make sure other threads get a chance at running. However, too
many calls to yield() may indicate a poor design.

For one thread to wait for another thread to die, call one of the three join() methods (see
lines 036-038). The join() method with no parameters waits forever, ensuring that the
thread's run() method returns before the program or other thread continues. The others
wait until run() returns, or until the specified amount of time elapses. You have the option
of specifying the number of milliseconds to wait or, for more precision, the number of
milliseconds and nanoseconds. (Similar parameters are available for the two sleep()
methods.)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

318

Specify that you want a thread to be a daemon by passing true to the setDaemon() method
(see line 040). Pass false to create a non-daemon, user thread. If you don't call this
method, the thread inherits its parent thread's daemon state. (If the main program creates
the thread, it will have non-daemon status by default.) You may call setDaemon() only
before calling a thread object's start() method. After a thread starts running, its daemon
status may not be changed, and calling setDaemon() at any other time throws
IllegalThreadStateException.

Note

Throughout this chapter, you will find numerous references to the wait(),
notify(), and notifyAll() methods. These are not Thread class declarations.
They are inherited from Object, and therefore, are available to all Java
classes. However, they should only be used in threaded code as
explained in this chapter.

Programming with Threads
Now, let's examine a program that creates and runs threads using objects of the Thread
class. Listing 19-2, ThreadDemo.java, shows how to use the Thread class to create a
process that runs in the background.

Listing 19-2
ThreadDemo.java
001: import java.io.IOException;
002:
003: // Extend Thread class and provide a run() method
004: class Background extends Thread {
005:
006: boolean finished; // True when thread should die
007:
008: // Constructor
009: Background(String name) {
010: super(name);
011: finished = false; // Initialize run–flag
012: }
013:
014: // Called by start() to run the thread
015: public void run() {
016: try {
017: while (!finished) { // Loop "forever"
018: sleep(2000);
019: System.out.println("\nHurry up!");
020: sleep(1000);
021: System.out.println("\nWhat's taking you so long?");
022: sleep(1500);
023: System.out.println("\nC'mon, press that Enter key!");
024: }
025: } catch (InterruptedException e) {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

319

026: return; // End the thread
027: }
028: }
029:
030: // Halt the thread
031: public void halt() {
032: finished = true; // Cause while loop in run() to end
033: System.out.println("Stopping thread " + getName() + "\n");
034: }
035: }
036:
037: // Main program class demonstrates background processing
038: class ThreadDemo {
039: public static void main(String args[]) {
040:
041: // Create the background thread
042: Background background =
043: new Background("Background process");
044: System.out.println(
045: "Starting thread. Press Enter to stop.");
046:
047: // Start running the background thread
048: background.start();
049:
050: // Simulate foreground process: wait for Enter key
051: try {
052: while ((char)System.in.read() != '\n') ;
053: } catch (IOException e) {
054: System.out.println(e.getMessage());
055: }
056:
057: // Stop the background thread
058: background.halt();
059: }
060: }

Compile and run the sample program, which asks you to press Enter — but don't do that.
Instead, wait for a few seconds, and you soon see some messages that tell you to hurry up
and press that key!

Note

After you press Enter, the program may continue printing warning
messages before it finally ends. This "bug" is intentional — I left it in to
demonstrate the independent nature of threads. Later in this section, I
explain how to repair the problem.

The program's hurry-up messages are printed by a background Thread object, whose run()
method executes simultaneously with a statement that waits for you to press Enter (see
line 052):

while ((char)System.in.read() != '\n') ;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

320

It is traditional to insert a single space ahead of the semicolon to indicate that the loop
executes a null statement — in other words, as written here, the while statement loops
"forever" until interrupted in some way. Some programmers insert a comment to make
the statement's purpose perfectly clear:

while ((char)System.in.read() != '\n') /* wait */ ;

In a conventional, single-threaded program, such a statement pauses the program until the
user presses Enter. However, because this program creates a background thread that runs
concurrently with the main program (itself a thread), the messages are printed while the
loop waits for you to press the Enter key.

The first step in creating a thread is to extend the Thread class. The sample program does
that by declaring a new class, Background, like this (see line 004):

class Background extends Thread {
...
}

The extended class's constructor (see lines 009-012) performs two jobs that are typical in
classes that extend Thread:

super(name);
finished = false;

Calling super() executes the Thread constructor, and this must be the first statement. It is
optional to pass a String name, but usually you'll want to do this to distinguish multiple
threads by giving them unique names. The second statement initializes a boolean variable
to false. The run() method examines finished, often called a state flag, to determine when
the thread should end.

Every extended Thread class must override run() to provide the code that the thread
object is to execute. The run() method does not throw any checked exceptions. However
it will almost always catch InterruptedException as shown in the listing. In general form,
a run() method usually looks like this:

try {
 while (!finished) {
 // execute the thread's statements
 }
} catch (InterruptedException e) {
 return;
}

Another do "forever" while loop executes the thread's statements while finished remains
false. Apparently, something must happen to cause finished to become true so that run()
and the thread can end. Catching InterruptedException is necessary only if run() calls a
method such as sleep() that throws it. In most cases, however, you'll want to catch this
exception to provide for the thread's orderly shutdown in case it is interrupted. Otherwise,
the proper way to terminate a thread is to simply return from run(). When run() ends, so
does the thread, which can never be restarted.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

321

Inside run(), your code can perform whatever actions you want the thread to take. Here,
the sample program executes three pairs of statements. Here's one pair:

sleep(2000);
System.out.println("\nHurry up!");

Calling sleep() pauses the thread for the specified number of milliseconds — or about 2
seconds in this case. Sleeping pauses the thread, and it allows other threads to run. In this
case, one other thread is the main program, which waits for you to press the Enter key.

To create the background thread, the sample program's main() method executes the
statement at lines 042-043:

Background background =
 new Background("Background process");

This does not create the actual thread — it merely creates the Background class object,
which serves as an interface to the thread. To create the actual thread and start it running,
the program must also call the start() method as shown at line 048:

background.start();

This creates the thread and causes the scheduler to call the background object's run()
method. You may construct as many other threads of the same class as you want, and
they may have the same or different names.

After you finally press Enter, the main while loop ends. To stop the thread, the program
executes the statement at line 058:

background.halt();

The halt() method is just a common one that I added to the Background class — it's not
inherited from Thread, and a similar method is not required in threaded code. But even
though you don't have to provide a halt() method in your own classes, you do need to
provide some way to change the state of the object and thereby cause the thread to end. In
this case, halt() performs that duty by setting the state flag to true:

finished = true;
System.out.println("Stopping thread " + getName() + "\n");

The method also prints a message informing you that the thread is stopping. Method
getName() returns the name of the current thread object. On screen you see something
like this:

Stopping thread Background process
C'mon, press that Enter key!

As mentioned, you might also see extraneous messages that continue to tell you to hurry
up. This proves that our Thread class's run() method indeed executes independently of
other code. Take another look at the while loop in run() to see why the extra message is
printed:

while (!finished) {
 sleep(2000);
 System.out.println("\nHurry up!");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

322

...
}

When halt() sets finished to true, there's no telling which statement in the loop is
executing. Therefore, other output statements might be executed until the loop starts over
from the top, and the now true finished flag is noticed, causing the loop, and subsequently
the thread, to end. To repair the problem, you could change each output statement to
something like this:

if (!finished) {
 sleep(2000);
 if (!finished)
 System.out.println("\nHurry up!");
}

As I said, I left this bug in to illustrate an important aspect of threaded code. One method
might change a variable's value while another method is using it. In this small example,
no harm occurs because there's only one background thread. In more sophisticated
programming, as later examples in this chapter show, it is necessary to use locks to
ensure the proper use of thread variables. It is also usually necessary to pause threads so
they can continue when needed and shut down in a more orderly fashion than in this
simple demonstration.

Implementing the Runnable Interface
The second way to create a thread is to implement the Runnable interface. This avoids
extending the Thread class and inheriting its multitude of methods, most of which you
probably don't need. As a side benefit, implementing Runnable also permits you to
extend another class and implement the interface at the same time. If you extend Thread,
you can't also extend another class because Java classes are limited to single inheritance.
(You could extend the class, and then extend it again from Thread.) Listing 19-3,
Runnable.txt, shows the Runnable interface declaration.

Listing 19-3
Runnable.txt
001: // The Runnable interface
002: public interface Runnable {
003: public abstract void run();
004: }

As you can see, Runnable is only a simple interface with one method, run(), which some
documents call the "soul of a thread." There is no difference in purpose or design
between the Thread class and Runnable interface run() methods. Each method performs
whatever actions you want in a separate thread.

Note

As with Thread.run(), never directly call the Runnable interface's run()
method. The thread scheduler calls run() to start the thread running.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

323

Listing 19-4, Primes.java, demonstrates how to implement the Runnable interface. This
program is becoming an old standard for Java thread demonstrations, but my version uses
structured programming instead of the usual labeled-loop and break statements that
appear in several other sources.

Listing 19-4
Primes.java
001: import java.io.IOException;
002:
003: class Background implements Runnable {
004:
005: boolean finished = false; // True to end run()
006: int num = 3; // Prime number candidates
007: int delay; // Time between each output
008:
009: // Constructor
010: Background(int delay) {
011: this.delay = delay;
012: }
013:
014: // Return true if num is a prime number
015: public boolean isPrime(int n) {
016: for (int i = 2; i < n; i++)
017: if ((n % i) == 0)
018: return false;
019: return true;
020: }
021:
022: // Search for prime numbers in the background
023: public void run() {
024: try {
025: while (!finished) {
026: if (isPrime(num))
027: System.out.println(num);
028: num++;
029: Thread.sleep(delay);
030: } // while
031: } catch (InterruptedException e) {
032: return;
033: }
034: }
035:
036: // Set flag to stop run()
037: public void halt() {
038: finished = true;
039: }
040:
041: }
042:
043: // Compute prime numbers in the background

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

324

044: class Primes {
045:
046: static char getChar() {
047: char ch = '\0';
048: try {
049: ch = (char)System.in.read();
050: } catch (IOException e) {
051: System.out.println(e.getMessage());
052: }
053: return ch;
054: }
055:
056: static void waitForKey(char key) {
057: while (getChar() != key) /* wait */ ;
058: }
059:
060: public static void main(String args[]) throws Exception {
061: System.out.println("Press Enter to begin and again to quit");
062: waitForKey('\n');
063: // Construct and start thread
064: Background background = new Background(50);
065: Thread T = new Thread(background);
066: T.setPriority(4);
067: T.start();
068: // Wait for Enter key while thread runs
069: waitForKey('\n');
070: background.halt(); // Stop the thread
071: }
072: }

To create a class that executes its code in a separate thread, declare it as the sample
program does at line 003:

class Background implements Runnable {
...
}

A Runnable class is required to provide a run() method, which is called when the thread
starts. As when extending Thread, however, you probably also need a constructor, some
kind of state flag such as the boolean finished variable used here, and various methods to
perform actions while the thread runs. In this case, Background provides a constructor
that saves a delay value to pause the thread between each output operation (see line 011).

The program constructs the thread a little differently than before. Take a close look at
lines 064-067:

Background background = new Background(50);
Thread T = new Thread(background);
T.setPriority(4);
T.start();

After constructing the Background object, a Thread object is also created by passing
background as an argument to the constructor. This creates the Thread object and

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

325

connects it to our object's run() method. (The next section explains the third statement.)
Calling start() for the Thread object causes the thread scheduler to call the Background
object's run() method.

Setting a Thread's Priority
Line 066 in Listing 19-4 calls setPriority() to set the thread's priority to 4, one less than
the median value of 5. This is not required, but I added the statement to demonstrate a
common technique that can improve user-response times.

In general, code that waits for user input should run at a slightly higher priority than code
that merely outputs information or performs calculations. This is especially important in
programs such as this one where the user expects an immediate response to key presses.
There's nothing more annoying than hitting the Escape key, or pressing a Cancel button,
and having the program travel on for several more steps before recognizing the command.
Setting input code priority a little higher or setting other threaded code lower helps, but
does not guarantee, better responsiveness.

Implementing the run() Method
Implement the run() method to execute your code while the finished flag remains false
(or until some other external condition changes). In this case, referring again to Listing
19-4, the program calculates and displays prime numbers using a while loop that inspects
the finished state flag, which becomes true when the program commands the thread to
end:

while (!finished) {
 if (isPrime(num))
 System.out.println(num);
 num++;
 Thread.sleep(delay);
}

The statements must be executed in a try-catch block that watches for
InterruptedException, which sleep() throws if the thread is interrupted before it is done
sleeping for the specified amount of time. This might happen, for example, if another
thread calls Thread.interrupt(). The usual response to InterruptedException is to simply
return from run(), and in that way end the thread.

In any method other than run(),different techniques may be called for. This is because
when a method such as sleep() throws InterruptedException, the interrupted state of the
thread is cleared. To force the thread to stay interrupted, call the interrupt() method as
follows:

try {
...
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

326

You may use the same code whether your class extends Thread or implements Runnable.
The static currentThread() is called in reference to the Thread class (see line 016 in
Listing 19-1). That method returns a reference to the Thread object, for which you can
call other methods such as interrupt(). If your class extends Thread, however, you can
simply call interrupt() directly as you can other inherited methods.

In addition to run(), you'll probably also want to include a method that changes the
finished flag, and thus ends the thread. The sample program does this with a simple halt()
method at line 037-039:

public void halt() {
 finished = true;
}

This is the same technique used to halt a thread created using a class that extends Thread.
When the program calls halt() at line 070, the thread's run() method detects the change to
the state flag, and returns, terminating the thread.

Sleeping Threads
To slow the program's output, the Background thread calls sleep() at line 029 (see Listing
19-4), passing the delay value used to construct the Background object (see line 064).
The only reason this program calls sleep() is to slow output to a reasonable speed.

There are two forms of sleep() (refer to lines 018-019 in Listing 19-1).The single
argument sleep(M) waits for approximately M milliseconds or until the thread is woken.
The two-argument sleep(M, N) waits for about M milliseconds plus N nanoseconds or
until woken. Passing 0 to sleep() creates a sleeping beauty that waits "forever" until
another Prince Charming thread wakes it up usually by calling Thread.interrupt().
Sleeping indefinitely is acceptable if you are sure the thread will be interrupted;
otherwise, it is usually best to specify a sleep time value.

Tip

Theoretically, the statement sleep(0, 1) sleeps for the least amount of time,
about 1 nanosecond. However, this assumes the system and thread
scheduler are capable of controlling activity within such a small time frame.

Daemons
It is useful to comment out the statement at line 070 in Listing 19-4 and run the program:

// background.halt();

Now, even after you press Enter, the thread continues to run in the background,
effectively preventing the main program from halting! After all, the main program is just
another user thread, and by Java's rules, the program ends only when all user threads
terminate. If you try this, to end the program, press the interrupt key, usually Ctrl+C or
Ctrl+Z, depending on your operating system. (Ctrl+Break might also work.)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

327

Obviously, this kind of runaway thread is undesirable, and you should normally prevent
its occurrence by providing a means such as a halt() method and a state flag variable that
cause run() to end. However, when that is not convenient — for example, you may want
a thread to run independently and end on its own when the program ends — the solution
is to make the thread a daemon. To make that change to the sample program, in addition
to commenting out line 070, add this statement between lines 066-067 (the new line is
shown here in bold):

T.setPriority(4);
T.setDaemon(true); // Make thread T a daemon
T.start();

You must call setDaemon() before starting the thread. Making the thread a daemon
causes it to end automatically after all other user threads end. In this case, the only user
thread is the main program, so making the separate thread a daemon causes it to shut
down when the program ends.

Synchronizations
When two or more threads use the same objects, the data must be protected so that one
thread doesn't read the information while another is updating it, or so that both don't
attempt to change the data simultaneously, which might cause one of the changes to be
discarded. If the object in question is your bank balance, you certainly wouldn't want to
lose a deposit because the programmers didn't properly guard the information against
these kinds of problems.

With Java threads, a program uses object locks to ensure that only one thread at a time
has access to critical data. Threads obtain locks by executing synchronized statements.
Obtaining locks and writing synchronized statements are not difficult tasks, but it takes
careful programming to ensure that the results work correctly. Following are some
overviews of how locks and synchronizations work in Java. After that, I present a full
demonstration of a threaded client-server application that you can use as the basis for
your own threaded code.

Object Locks
Every Java object can provide a lock that is respected by synchronized code. You don't
have to do anything special to create a lock — one is automatically provided for every
object as needed. However, you need to know a few important points about locks to
understand this section's sample programs:

* There is one lock available per object. All Java objects are therefore potentially
thread-safe.

* A locked object may be of any class, but that class does not have to implement
Runnable or extend Thread, although it may. Locks are available for all Java
objects of any class.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

328

* Locks are issued on a per-thread basis. When a thread has a lock on an object, no
other thread may use that object in synchronized code until the first thread
releases the lock.

* Locks may be specified for named objects (for example, instance variables in an
object), or for an entire object. Another way to say this is that in Java,
synchronized code can be regional. A single statement can be synchronized, as
can entire methods.

* Locks are not available for non-object variables such as ints and floats. However,
Java guarantees that reading and writing native data types are atomic operations.
This means that two or more threads cannot accidentally scramble a native-type
variable by writing to it simultaneously, even if the variable occupies multiple
bytes. However, there is no way (unless you invent one) to specify the order in
which threads read and write native variables, and for that reason, critical data
that needs to be protected should always be in object form.

Note

A lock is sometimes also called a monitor. When a thread obtains a lock
for an object, it is said to "own the object's monitor." This is just another
way of stating that a thread has locked the object for the thread's use.

Synchronized Statements
To lock an object for a thread, the program executes synchronized statements. This can
take one of several different forms, but always uses the word synchronized. The most
common way to create synchronized statements is to declare a method like this:

public synchronized void anyMethod(Object v) {
 anyData = v;
}

The assignment to anyData takes place only when the thread that calls the method is
given a lock on the object in which anyData resides. The method can be private, public,
or protected, and it can return any data type. There are no restrictions on what a
synchronized method can do, but it must obey various rules as explained in this chapter in
order to work correctly in threaded code.

When a thread calls anyMethod(), a lock is obtained for the current object. If another
thread already owns that lock, anyMethod() is said to block, causing it to wait indefinitely
for the lock to become available. Obviously, threads must eventually release the locks
they obtain so that other blocked threads may continue. If two threads block on each
other's objects, deadlock results, and the program will hang. Careful programming is the
only way to avoid this problem.

Note

Java automatically obtains object locks for synchronized statements.
When those statements finish, Java automatically releases the held lock.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

329

You do not have to obtain locks nor release them in code — all you need
to do is execute the synchronized statements.

When a thread calls a synchronized method, it locks the entire object for which that
method was called. Another way to write a synchronized method is to encase it in a
synchronized statement block. Here's another version of anyMethod():

public void anyMethod(Object v) {
 synchronized(this) {
 anyData = v;
 }
}

Again, the assignment to anyData takes place only when the thread can obtain a lock on
the object (this) for which anyMethod() was called. There are no functional differences
between this technique and the former one, but if all statements are to be synchronized —
in other words, if you want the thread to own the lock on the object for the entire time the
method executes — it's easier simply to declare the method to be synchronized. Use the
second technique to synchronize only a portion, or region, of the method. Here's one
more version of anyMethod():

public void anyMethod(Object v) {
 if (v == null) return; // unsynchronized
 synchronized(this) {
 anyData = v;
 }
 // more unsynchronized statements
}

Outside of the synchronized statement are any statements that do not need to obtain the
object's lock. Here, there is no reason to lock the object for the if statement that checks if
v is null. Only the assignment to anyData needs to be protected against access from
multiple threads. Using regional synchronized code this way helps improve performance
by limiting the amount of time that a thread owns a lock on an object, causing other
threads to block.

Tip

The more you can do to limit the time that a thread owns an object's lock,
the better your program will perform. For best results, synchronize only the
statements that read and write object data — don't synchronize other
statements that, for example, merely perform a calculation or do other
non-critical tasks.

You can also synchronize statements for a specific object. Using this technique, you can
write the synchronized statement block in the preceding anyMethod() like this:

synchronized(anyData) {
 anyData = v;
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

330

Instead of synchronizing on this, which obtains a lock on the entire object, the revised
code obtains a lock only for anyData. Other data in the object remains unprotected from
access via other threads. Remember that anyData must be an object of a class; it cannot
be a variable of a native data type such as int or double. However, it can be an object of a
wrapper class such as Integer or Double (see Chapter 9, "Numeric Classes").

Synchronization and Data Hiding
As you learned way back in Chapter 6, "Object-Oriented Programming," encapsulation
(data hiding) helps protect data from harm. By making data private to a class, and
providing methods that read and write the data's values, the class controls access to its
information. This lends better organization to the program, and it helps simplify
debugging.

By using synchronized methods to access private data, you protect that data from being
used by more than one thread at a time. Probably, the best way to do this is to make the
data private to its class, and then use synchronized methods to read and write the data.
This technique gives you the benefits of encapsulation and also makes the data thread-
safe. Listing 19-5, SafetyClass.java, illustrates the basic class design. This is not a
complete program — you may compile it, but it lacks a main() method, and it doesn't run.

Listing 19-5
SafetyClass.java
001: // Illustration only: not a complete program
002: public class SafetyClass {
003:
004: private int counter; // Private data in class
005:
006: // Thread–safe method to write data
007: public synchronized void setCounter(int n) {
008: counter = n; // Assign new value to counter
009: }
010:
011: // Thread–safe method to read data
012: public synchronized int getCounter() {
013: return counter; // Return counter's current value
014: }
015: }

Any threads that use the same object of the class SafetyClass obtain a lock on that object
when calling the synchronized setCounter() and getCounter() methods. The lock is
obtained for the entire SafetyClass object, including its private counter variable. As a
result of the lock, it is not possible, say, for one thread to be changing counter's value
while another thread is reading it. The lock on the object is automatically released when
the synchronized method ends.

But despite the class's protections, there is still no way to specify the order in which two
or more threads call setCounter() and getCounter(), and for that and other reasons,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

331

SafetyClass can still be abused. For example, as written, the class does not prevent
problems with get-change-put types of operations. This can happen if one thread calls
getCounter(), changes the returned result, and then calls setCounter(). Meanwhile,
another thread might be doing the same, causing one set of changes to be lost! The
following code is unsafe:

SafetyClass obj = new SafetyClass();
...
int temp = obj.getCounter();
temp += 10;
obj.setCounter(temp); // ???

The calls to getCounter() and setCounter() obtain the object's lock, but the addition of 10
to temp is unprotected. During that statement's execution, another thread might very well
access obj. This illustrates that, when writing threaded code, it is always necessary to
have a clear understanding that objects are protected only when locked for the thread that
accesses the object's data. To solve the get-change-put problem, you could add another
synchronized method to the class:

public synchronized addToCounter(int n) {
 counter+= n;
}

Now, the program's threads can safely add values to counter by calling the synchronized
addToCounter() method. Even so, it is still possible for a thread to call getCounter() and
setCounter() in an unsafe attempt to modify the object. Threads, locks, and synchronized
code go only so far in protecting data. Writing threaded code that works correctly still
takes careful planning and programming.

Note

Class constructors cannot be synchronized, nor do they need to be since
it would be senseless for two threads to attempt to construct the same
object at the same time.

Synchronized Containers
As mentioned in Chapter 18, "Utilities and Legacy Classes," Java's container library of
Collection and Map classes are not thread-safe. No methods in the container classes are
synchronized, and threads that access objects in unprotected containers may risk losing
information. (The legacy Vector class, however, is thread-safe.)

One solution to this problem is to encase the container in a synchronized wrapper, as
provided by the Collections class. For example, if myTree is any Collection-based
container such as a TreeList, the following code synchronizes the container:

import java.util.*;
...
Collection safe = Collections.synchronizedCollection(myTree);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

332

All methods for the safe container are now synchronized, effectively preventing threads
from calling them in unsafe ways. However, it is still necessary to use a synchronized
block for iterations on the container's objects:

synchronized(safe) {
 Iterator I = safe.iterator();
 while (I.hasNext())
 f(I.next()); // pass each object to method f()
}

However, this solution still doesn't prevent the get-modify-put problem mentioned in the
preceding section. If one thread gets an object from the container, changes it, and then
puts the object back, there's nothing to prevent another thread from doing the same. To
prevent this kind of problem, it may be best to remove the object, modify it, and then put
it back. Or, write a synchronized method or statement block that performs the entire
modification operation while the thread has a lock on the container.

A simpler solution to the problem of creating thread-safe containers is to declare the
unsynchronized container as a private member of your class. The class can them also
provide synchronized public methods for all operations involving the container. This is
just an extension of the data-hiding illustration in the preceding section. The program
listings discussed in the next sections demonstrate more about this technique.

Client-Server Threaded Code
As a demonstration of threaded code, and to provide a framework for your own programs,
the next several listings create a simulated client-server model that uses multiple,
concurrent threads for all operations. I am using the word "server" here in the sense of a
print server — a program that queues and executes printing jobs so the client program
(and its user) can go on with other tasks without waiting for each printout to finish.

Threaded code handles this type of problem perfectly. In addition to showing the design
for the client-server programming, the following examples also make each job perform
its actions in a separate thread. Although the programming is just a shell, to make the
results interesting, each job is given a name and a random amount of time from 1 to 10
seconds, representing the amount of time that a real job, such as a printout, might require.
You might want to compile and run the full program now before examining its
construction. All listings are in the c19/LockDemo directory on the CD-ROM. Running
the program produces output such as shown here:

javac LockDemo.java
java LockDemo
<<< Press Enter to end program >>>
Sleeping for 1 second(s)

Starting Job #1
Time = 3 second(s)
Sleeping for 5 second(s)

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

333

Starting Job #2
Time = 4 second(s)

Finishing Job #1
Ending thread Job@77d134

Finishing Job #2
Ending thread Job@47e553
Sleeping for 3 second(s)

Starting Job #3
Time = 5 second(s)

Finishing Job #3
Ending thread Job@20c10f

Each job executes for its specified amount of time, and the program also sleeps in
between jobs, also for a random length of time. This simulates the client side of the
program — users typically feed jobs to the server at irregular intervals. Press Enter after
watching the display for a while. When you do, any unfinished jobs complete before the
program ends. But pressing Ctrl+C interrupts all threads and ends the program
immediately.

A Thread-Safe Queue Class
Now let's take a look at how the client-server demonstration works. First, we need a
mechanism to store jobs as they are handed to the server. For this, I wrote a thread-safe
Queue class, shown in Listing 19-6, Queue.java.

Listing 19-6
Queue.java
001: import java.util.LinkedList;
002:
003: public class Queue {
004:
005: private LinkedList q = new LinkedList();
006:
007: public synchronized void add(Object o) {
008: q.add(o);
009: }
010:
011: public synchronized Object get()
012: throws InterruptedException {
013: while (q.isEmpty())
014: wait();
015: return q.removeFirst();
016: }
017:
018: public synchronized boolean isEmpty() {
019: return q.isEmpty();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

334

020: }
021: }

A classic queue data structure inserts objects at one end of a list and takes them off the
other — like a queue at a grocery store where each customer waits for a turn at the
register. This is the perfect container for our server because we want to process each job
in the order received.

For the actual storage device, Queue uses a LinkedList container (see line 005) imported
from the java.util package. This is ideal because the container takes only as much
memory as needed to store its contents, and we don't need to be concerned about the
container expanding or occupying too much memory.

The Queue class declares three synchronized methods. The add() method adds an object
to the queue's tail. The get() method returns the first object from the queue. The isEmpty()
method returns true if the Queue contains no objects. It may be obvious that add() and
get() must be synchronized so that threads calling those methods obtain a lock on the
object beforehand, and in that way prevent conflicting access to the private LinkedList
container. However, method isEmpty() must also be synchronized because it wouldn't do
for a thread to be in the process of inserting an object, and for another thread to miss
detecting that fact because isEmpty() returns true.

Tip

It does no harm to synchronize a method that doesn't need to be, but
making every method synchronized might have a negative effect on
performance. As mentioned, for best results, a program should
synchronize as few statements as possible.

The get() method in the Queue class is particularly interesting, and it illustrates a
fundamental technique in writing threaded code. Take a close look at the method's
programming:

public synchronized Object get()
 throws InterruptedException {
 while (q.isEmpty())
 wait();
 return q.removeFirst();
}

First, in addition to being synchronized, get() throws InterruptedException. This
exception is thrown by wait(), which pauses the thread that calls get(). The reason for
throwing the exception back to get()'s caller is that we want that thread's run() method to
receive the exception if thrown, and in that case, to terminate the interrupted thread
gracefully.

In most all cases, as demonstrated in get(), a synchronized method calls wait() inside a
loop that inspects some kind of condition involving the object. Here, the condition is
whether the queue is empty. While it is, the program waits until an object is handed to the
server for processing. Calling wait() pauses the thread and, most important, it releases the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

335

lock on the object. Thus other threads may access the queue while get() waits for it to
receive something to store. In this case, another thread may call add() or isEmpty() while
get() is waiting for something to come into the queue.

When wait() returns, the thread resumes, and the lock on the object is again obtained.
This happens automatically, but it is important always to call wait() in a loop that inspects
the associated condition. It is entirely possible for wait() to return and for the condition to
be unchanged, thus indicating that the thread should again wait. Never write code like
this:

if (!condition) wait(); // ???

When wait() returns, condition might still be false. Use a while or other loop as in the
former example to ensure that the thread continues only when the waited-upon condition
is satisfied.

A Runnable Job Class
The client-server example needs jobs to perform. For that, I created the Job class in
Listing 19-7, Job.java. The class implements the Runnable interface — although not
required for the model, our jobs run in separate threads. The class also demonstrates how
objects can install themselves in threads with no help from the statements that create
those objects.

Listing 19-7
Job.java
001: public class Job implements Runnable {
002:
003: private String name; // Name of this job
004: private int delay; // How long it takes to do this job
005: private boolean ready; // True when job is ready to be done
006:
007: // Constructor
008: Job(String name, int delay) {
009: this.name = name;
010: this.delay = delay;
011: ready = false;
012: new Thread(this).start(); // Job runs itself in a thread!
013: }
014:
015: // Run method called by thread scheduler
016: public void run() {
017: try {
018: doWhenReady(); // Do the job when it is ready
019: } catch (InterruptedException e) {
020: return;
021: }
022: }
023:
024: // Performs the job's actual work

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

336

025: // Because this calls wait(), code cannot be in run()
026: // and it must be synchronized on this object
027: private synchronized void doWhenReady()
028: throws InterruptedException {
029: while (!ready)
030: wait(); // Wait indefinitely until ready
031: // Simulate the job by displaying messages and sleeping
032: // for the amount of time this job takes
033: System.out.println("\nStarting " + name);
034: System.out.println("Time = " + delay / 1000 + " second(s)");
035: Thread.currentThread().sleep(delay); // Simulate job runtime
036: System.out.println("\nFinishing " + name);
037: System.out.println("Ending thread " + toString());
038: }
039:
040: // Set the thread state flag to true
041: // and notify all threads of the change
042: public synchronized void doJob() {
043: ready = true;
044: notifyAll();
045: }
046: }

The Job class declares three private instance variables. Two, name and delay, represent
the name of the Job object and the time it takes to complete. (The delay merely simulates
the time a real job, such as a printout, would take.) The third instance variable, finished,
serves as an object state-flag that indicates whether this Job's thread should end.

The Job class constructor at lines 008-013 initializes its instance variables, and then uses
an interesting technique that starts the job running in a separate thread. This is done by
executing the statement

new Thread(this).start();

Creating a Thread object, passing it this — a reference to the Runnable Job object under
construction — and then calling start() causes the thread scheduler to call the Job.run()
method for this object. The object starts itself running in a separate thread almost
immediately after the object is constructed. To use this technique, the class must
implement the Runnable interface, or it must extend Thread.

Note

The method shown here is the proper way to have an object install itself in
a separate thread, but be careful when using this technique. If another
class extends Job, the thread is started before finishing the initialization of
the extended class object, and this may cause the thread to access
uninitialized instance variables declared in the extended class.

The Job class's run() method, stipulated by the Runnable interface, shows another typical
technique used in writing threaded code. Here is the run() method again for reference:

public void run() {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

337

 try {
 doWhenReady(); // Do the job when it is ready
 } catch (InterruptedException e) {
 return;
 }
}

This is the usual way to program run(). The reason for calling another private
synchronized method, doWhenReady() in this case, is because the thread probably needs
to call wait() at some point. However, run() cannot do that because wait() may only be
called when the thread owns the object's lock. This is not possible here because run() may
not be synchronized. In addition to being synchronized, the doWhenReady() method is
declared private because we don't want outsiders to call it.

The Job class's doWhenReady() method shows another typical example of threaded code.
The method throws InterruptedException so that its caller, run(), can shut down the
thread gracefully in the event it is interrupted for some reason. The first part of
doWhenReady() immediately calls wait():

public synchronized void doWhenReady()
 throws InterruptedException {
 while (!ready)
 wait(); // Wait indefinitely until ready
...

Consider the effect of this code. When a Job object is constructed, its constructor installs
itself in a separate thread. This causes the scheduler to call the run() method for the new
Job object. That method in turn calls doWhenReady(), which inspects the boolean ready
state flag, initialized to false, and then calls wait() while that condition remains false.
Thus, the object starts running and then almost immediately pauses, waiting for
permission to proceed.

The thread is poised on the brink of action, but it uses no CPU cycles. It just sits there
waiting for a signal to go ahead. When it receives that signal — in other words, when
wait() returns and the ready flag is found to be true — the rest of the doWhenReady()
method executes. Because this is just a simulation, the statements at this stage simply
print some messages and then call sleep() to simulate the amount of time that a real job
takes:

Thread.currentThread().sleep(delay);

Note

Unlike with wait(), calling sleep() does not require the thread to own the
object's lock. But if it does, as in this case, sleep() does not release the
lock as wait() does. While sleeping, no other threads may access this
object.

You might wonder at this point exactly how it is that wait() knows when to resume the
thread. This happens when another thread sends a notification that a condition has

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

338

changed, affecting one or more threads that are currently waiting. The method that
performs this magic for the Job class is crucial to the success of the program:

public synchronized void doJob() {
 ready = true;
 notifyAll();
}

When another thread wants a Job object to execute its tasks, it calls doJob(). This gives
the green light for the Job to go ahead by setting the ready state-flag to true. However, at
this time, doWhenReady() has probably called wait(), releasing the lock on the object. So
that wait() returns, and so the thread regains that lock, the program calls notifyAll(). This
sends a message to all waiting threads that they should check the conditions on which
they are waiting.

It should now be clear why you must always call wait() in a loop that inspects the
condition causing the thread to wait. When a thread calls notifyAll(), all waiting threads
are woken up (that is, all calls to wait() return), but only one or more selected conditions
may have changed. Other conditions for other waiting threads may be unchanged, in
which cases the threads should again call wait().

Note

The notifyA ll() method is inherited by all Java objects from the Object
class, and it can be called from any class method. A similar method,
notify(), also inherited from Object, notifies only one thread to wake up
(that is, to return from a wait() operation). However, notifyAll() is usually
safer because notify() wakes up at most a single thread, and there's no
way to specify which one is nudged back to life. If you are absolutely
positive that only one thread is waiting for a signal to proceed, you may
call notify(). But it is always okay, and usually preferred, to call notifyAll().

A Server Class
So far, the client-server model has a storage device (Queue) and some objects to store
(Job). It's now time to look at the server that receives Job objects, stores them in a Queue,
and executes them. To best understand the code, shown in Listing 19-8, Server.java, keep
in mind the idea of a print server that receives printing jobs and sends them to the printer.

Listing 19-8
Server.java
001: import Queue;
002: import Job;
003:
004: class Server implements Runnable {
005:
006: Queue q = new Queue(); // Construct our Queue object
007:
008: public void run() {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

339

009: try {
010: doWhenReady(); // Do the server's activities
011: } catch (InterruptedException e) {
012: return;
013: }
014: }
015:
016: // Perform server activities until shutdown
017: private synchronized void doWhenReady()
018: throws InterruptedException {
019: for (;;) { // Do "forever" loop
020: while (q.isEmpty()) // Wait until there is a job in
021: wait(); // the queue
022: Job j = (Job)q.get(); // Get the job
023: j.doJob(); // Do the job
024: } // for
025: }
026:
027: // Add a new job to the server's queue
028: // This returns immediately; the job is not performed
029: // until the server thread detects the queue is no longer
030: // empty.
031: public synchronized void add(Job j) {
032: q.add(j);
033: notifyAll();
034: }
035: }

The Server class is surprisingly similar to the Job class. Like Job, it implements the
Runnable interface because we want the server to run in a separate thread. This allows
clients that send jobs to the server to go on to other tasks without waiting for each job to
finish.

The Server class declares a single instance variable, q, as an object of the Queue class.
This provides the storage container for keeping Job objects. As in Job, the Server's run()
method calls another private method doWhenReady() for the same reasons discussed for
Job, namely because run() cannot be synchronized and the server needs to call wait() to
wait for jobs to come into the queue.

That happens in doWhenReady() inside a do-forever for loop at lines 019-024. You'll see
this kind of statement often in threaded code:

for (;;) {
...
}

Such a loop executes "forever," until that is, it is interrupted somehow. This action is
appropriate for the server because we want it to run continuously in the background, and
to be ready at any time that a new job needs doing. Inside the do-forever loop, a while
loop calls wait():

while (q.isEmpty())

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

340

 wait();

This pauses the server's thread while the Queue container is empty. As mentioned, wait()
releases the lock on the object so that other threads can call other synchronized methods
such as, in this case, add() (see lines 031-033). A client does that to hand a new Job
object to the server. After adding the Job to the queue at line 032, line 033 calls
notifyAll() to indicate to waiting threads that a condition has changed. Here, this causes
wait() at line 021 to return, at which time the loop inspects q.isEmpty(), and on finding an
object in the queue, removes the job, and executes it with the statements:

Job j = (Job)q.get();
j.doJob();

The first statement removes a Job from the queue. The second statement calls that Job
object's doJob() method. Recall that this method simply allows the Job thread to continue
— in other words, doJob() returns almost immediately. At that time, the server's do-
forever loop again waits for another Job object to enter the queue. You can see these
actions when running the program. Sometimes, new jobs come in while others have yet to
finish — and many jobs might be executing all at once. This is not exactly analogous to a
print server, which can probably print only one job at a time — unless, of course, the
server has access to multiple printers. But it is similar to other real-world threaded code,
such as the display of multiple objects on a graphics page, where numerous operations
execute independently while new ones are being queued.

A Client Class
Reviewing the client-server simulation program so far, we have

* The Queue class, providing a thread-safe storage mechanism

* The Job class, providing a simulation of a job's activity running in a separate
thread

* The Server class, whose task is to collect jobs, remove them from the queue in the
order received, and execute them

We now need a client program that creates jobs and passes them to the server. This
wouldn't have to run in a separate thread, but since that's what this chapter is all about, I
chose to have the Client class implement the Runnable interface. Listing 19-9, Client.java,
shows the programming for the Client class.

Listing 19-9
Client.java
001: import java.util.Random;
002: import Job;
003: import Server;
004:
005: class Client implements Runnable {
006:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

341

007: Random rand = new Random();
008: boolean finished = false;
009: int jobcount = 0;
010:
011: // Utility method creates a new numbered job with
012: // a random time delay to simulate how long the job takes
013: private Job getAJob() {
014: String name = "Job #" + ++jobcount;
015: int delay = 1000 + rand.nextInt(9000); // 1 .. 10 seconds
016: Job j = new Job(name, delay);
017: return j;
018: }
019:
020: public void run() {
021:
022: // Create the server daemon thread
023: Server server = new Server();
024: Thread T = new Thread(server);
025: T.setDaemon(true); // Server is a daemon!
026: T.start(); // Start the server thread running
027:
028: // Main run() actions
029: try {
030: while (!finished) {
031:
032: // Create a job and pass it to the server
033: Job j = getAJob(); // Create simulated job object
034: server.add(j); // Returns immediately
035:
036: // Simulate user activity by sleeping a random time
037: int time = 1000 + rand.nextInt(5000);
038: System.out.println("Sleeping for " +
039: time / 1000 + " second(s)");
040: Thread.currentThread().sleep(time);
041:
042: }
043: } catch (InterruptedException e) {
044: return;
045: }
046: }
047:
048: // Halt the client
049: // However, all job threads finish to completion!
050: public synchronized void halt() {
051: finished = true;
052: notifyAll();
053: }
054: }

In its basic design, the Client class resembles the Primes.java program (Listing 19-4). To
give the simulation something to do, Client provides the getAJob() method at lines 013-

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

342

018. The method creates a new Job object, assigns it a name (Job#1, Job#2, and so on),
and assigns it a delay time at random from about 1 to 10 seconds, in milliseconds.

Because it is Runnable, the Client class's activity takes place, as always, in a run()
method. This time, however, run() does not call wait(), and so there is no need to call
another private method to perform the thread's actions. Instead, all of the Client's activity
takes place directly in run(), mostly in a large try-catch block at lines 029-045. But some
interesting code takes place just before that block. Examine these statements closely:

Server server = new Server();
Thread T = new Thread(server);
T.setDaemon(true);
T.start();

This is where the Server object, named server in lowercase, is constructed. In addition, a
new Thread is created and it is told to become a daemon before calling the thread's start()
method, and in that way, starting the server. We want the server to be a daemon for two
good reasons:

* The server needs to run in the background as long as the client thread is alive so
that all jobs created by the client are properly handled.

* As explained earlier in the chapter, the Server class executes in a do-forever loop,
and it provides no normal way to shut down the thread except by interrupting it.
For this reason, the server thread must be a daemon so that it is terminated after
all other user threads die — including, by the way, any Job class threads that are
still not finished executing.

The code in the Client class is not otherwise interesting in terms of threaded
programming. All Client does is call getAJob() to construct a new Job object, j, and then
hand it to the server by executing the statement:

server.add(j);

The program then calls sleep() at line 040, again for a randomly selected amount of time,
in order to simulate irregular user activity. Having each Job execute for a random length
of time, and also delaying the creation of new jobs at random, provides a good test of the
model's threaded code.

Testing the Client-Server Model
All that remains is a test program that puts the Queue, Job, Server, and Client threads into
motion. The result is Listing 19-10, LockDemo.java. This is the program to compile and
run if you haven't done so already.

Listing 19-10
LockDemo.java
001: import java.io.IOException;
002: import java.util.*;
003: import Client;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

343

004:
005: class LockDemo {
006:
007: // Get a character from keyboard
008: static char getChar() {
009: char ch = '\0';
010: try {
011: ch = (char)System.in.read();
012: } catch (IOException e) {
013: System.out.println(e.getMessage());
014: }
015: return ch;
016: }
017:
018: // Wait for user to press a specified key
019: static void waitForKey(char key) {
020: while (getChar() != key) /* wait */ ;
021: }
022:
023: public static void main(String args[]) {
024:
025: // Construct and start the client (job creator) thread
026: Client client = new Client();
027: new Thread(client).start();
028:
029: // Wait for Enter key so threads can run
030: System.out.println("\n<<< Press Enter to end program >>>\n");
031: waitForKey('\n'); // All threads run while waiting
032:
033: // Halt the client thread; sever daemon also ends
034: // However, any remaining job threads finish to completion!
035: client.halt();
036: }
037: }

There's not much to the demonstration program — most of the program's activity takes
place in its Runnable classes. The main program begins by constructing a Client object
and starting its thread:

Client client = new Client();
new Thread(client).start();

As previously explained, this also starts the server as a daemon thread, but the main
program doesn't need to be aware of that fact. After printing a message, the program
waits for you to press the Enter key (see line 031). The only reason for doing this is to
keep the main program running so the threads have a chance to carry out the simulation.
After you press Enter, line 035 halts the client thread by executing the statement:

client.halt();

However, because there might be Job objects waiting to be finished, the program
probably does not immediately end. It will do so only after the last Job thread terminates.
Also, as mentioned, the server daemon thread ends only after all user threads terminate

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

344

— including any Jobs, the Client, and the program's main() method. Thus the server is
the last thread to go, ensuring that all jobs are finished before the program ends.

Summary
* A thread represents a program's sequence of execution. Java programs can start

multiple threads, all of which run as though their statements were interleaved.
Threads with higher priorities get first crack at system resources; those with lower
priorities operate more in the background.

* The thread scheduler determines which threads run and for how long. Because the
thread scheduler is part of the Java virtual machine, it is implemented differently
on various systems. However, threaded code runs similarly on all supported
platforms.

* Every Java program is already threaded. The program itself executes in a thread,
while the Java garbage collector executes in a separate thread of its own. You
may create as many other threads as you need to run concurrent tasks such as
printing in the background and loading graphics images, perhaps for an animation,
while other operations take place.

* You can create a thread two ways. A class can extend the Thread class, or it can
implement the Runnable interface. In either case, the class must provide a run()
method that performs the thread's activity. Never call run() directly. The thread
scheduler calls it when the program starts the thread by calling Thread.start().

* The only reason to extend Thread is to override one of the class's methods.
However, because extending Thread causes all methods to be inherited by the
subclass, it is easier and more efficient for a class to implement Runnable.

* Every Java object has an associated lock that a thread may obtain in order to have
exclusive access to the object. A lock is obtained by executing synchronized
methods or statements. Locks are also sometimes called monitors. A lock is
available for objects of any class, regardless of whether that class extends Thread
or implements Runnable.

* A thread typically calls wait() to pause the thread and to allow other threads to
access the object. Calling wait() requires the thread to own the object's lock, and it
releases that lock while the thread lies dormant. The wait() method returns when
another thread calls notify() or notifyAll(), usually after changing some condition
upon which threads might be waiting. The code that calls wait() should always do
so in a loop that inspects the waited-upon condition. This is because all threads
might be woken up, but only one or some conditions might have changed.

* A thread may also call sleep() to pause for a certain length of time. It is not
necessary for a thread to own the object's lock before calling sleep(), but if it does,
that lock is not released. A thread can call yield() to allow other threads some time
to run — during lengthy calculations, for example.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

345

Chapter 20 AWT Applets and Applications
Java's Abstract Windowing Toolkit (AWT) provides an extensive set of classes for
writing a graphical user interface, more commonly known by the sticky acronym GUI.
Although the AWT has been around since Java's beginnings, it has undergone several
radical changes from the time of its initial release in the JDK 1.0. For that reason, it is not
enough merely to learn AWT's classes; you also need to understand a little about the
toolkit's history and especially its different models for supporting event handlers — the
code that is executed, for example, when a user clicks a GUI button in a window.

This chapter introduces many of the AWT's classes and discusses some the toolkit's pros
and cons. You learn how to use the AWT to construct applets for execution in a Web
browser, and also for stand-alone graphical applications. This information also forms the
foundation for the newest GUI toolkit on the block, Java's Swing components, covered in
Chapter 21, "Swing Applets and Applications." As the following sections suggest,
choosing between AWT and Swing requires careful consideration of the advantages and
disadvantages of each.

In This Chapter

* Introducing the Abstract Windowing Toolkit

* Programming AWT applets

* Programming AWT stand-alone applications

* AWT event-handling models

* About events and listeners

* Using adapters and anonymous classes

* Significant AWT classes

Introducing the AWT
Often irreverently termed the "oh no, not Another Windowing Toolkit," the AWT
provides several key features for writing GUI applets and applications. Among these are
AWT's main characteristics:

* The AWT is a peer-based set of classes, meaning that it serves largely as an
application programming interface, or API, to existing windowing capabilities
provided by the operating system. For example, in Windows, an AWT button is
actually a Windows button. In Linux and UNIX, a button might be provided by
the KDE or Gnome desktop systems running X *.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

346

* Using the AWT, Java applets and applications display the same GUI elements
used by native programs.

* X, which is sometimes incorrectly called X Windows, provides low-level, networked, graphical
windowing software for Linux, Solaris, and other UNIX-type systems.

* The AWT provides two models for handling asynchronous events such as those
that occur when a user drags the mouse or clicks on a GUI button. These are the
inheritance model (sometimes also called the hierarchical model) and the
delegation model. The second and newer delegation model is recommended for
new programs. Java 2 still supports the old inheritance model, but many of its
methods are now deprecated.

* The AWT provides containers and components that simplify the construction of
GUI applets and applications. There are many classes for creating windows,
dialog boxes, applets, buttons, check boxes, pull-down menus, and other elements
familiar to GUI users all over the world. This chapter lists and demonstrates some,
but not all, AWT classes. Full coverage of the AWT could easily fill a book of
this size.

* The AWT provides layout managers that position a GUI's graphical elements
according to various organizational plans. Because Java code, especially applets,
might run on any type of computer system from PCs to Macs to full-blown UNIX
networks, exact positioning of GUI components is rarely practical. Layout
managers help ensure that AWT applets and applications look similar across
widely differing operating environments and screen resolutions. (Swing can also
use the AWT's layout managers.)

* The AWT provides numerous non-component supporting classes for 2D graphics
and sound, and also for commonly needed items such as foreground and
background color values. Even if you plan to move up to the newer Swing
components as described in the Chapter 21, you'll still use many of AWT's non-
component classes in your applets and applications.

There are two types of AWT programs: applets and applications. To introduce AWT, and
to show how to compile and run Java programs that use this toolkit, the following two
sections introduce both types.

Creating AWT Applets
What's the difference between an applet and an application? Answer: five letters and two
syllables. Actually, there aren't many significant differences, except that an applet runs
under control of a Web browser such as Netscape or Internet Explorer. An application
runs as a stand -alone program under control of the Java runtime environment, and it
therefore requires a main() method. Applets do not have a main() method; instead, they
typically use an init() method to get started.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

347

Note

For security reasons, applets executed in a browser over the Internet are
not permitted full access to system resources such as reading and writing
files. Applications have no such restrictions.

Listing 20-1, AppletADay.java, demonstrates the rudiments of programming Java applets
with AWT. Instructions for compiling and running the demonstration follow the listing.

Listing 20-1
AppletADay.java
001: import java.applet.Applet;
002: import java.awt.Color;
003: import java.awt.TextArea;
004:
005: public class AppletADay extends Applet {
006: // This method initializes the Applet
007: public void init() {
008: setBackground(Color.gray);
009: String s = "An Applet a Day Keeps the Debugger Away!";
010: add(new TextArea(s, 4, s.length()));
011: }
012: }

You compile an applet from a command-line prompt the same way you do any other Java
program. For example, to compile AppletADay, enter this command:

javac AppletADay.java

To run the resulting AppletADay.class file, you have two choices. One method is to use
the appletviewer utility provided with the Java 2 development system. Specify an HTML
file that loads the applet with a standard <applet> tag. In this case, do that by entering the
command

appletviewer AppletADay.html

Figure 20-1 shows the AppletADay applet running in appletviewer.

Insert fg2001.jpg

Figure 20-1
AppletADay running in Java's appletviewer utility

The AppletADay.html file is in the same directory as the listing. In this case, the HTML
file is just a minimal shell that you can use to test any applet. It contains the following
<applet> tag:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

348

<applet code = AppletADay width = 300 height = 200>
</applet>

For simple applets, the preceding code should work fine — simply change AppletADay
to your applet's class filename. However, you might need to adjust the width and height
parameters.

Another, and perhaps easier, way to run an applet is to open its associated HTML file
using your Web browser. Or, use a directory utility such as Windows Explorer or, in
Linux, a KDE or Gnome directory window to open AppletADay.html. This should bring
up your browser and load the applet. If the browser is already running, you can instead
use the File|Open command to open the HTML file. Figure 20-2 shows AppletADay
running in Internet Explorer. Depending on your browser and operating system, the
results on your screen might differ slightly from those shown here.

Insert fg2002.jpg

Figure 20-2
AppletADay running in Internet Explorer under Windows

I prefer running applets in a browser because this shows how the applet appears to users
over the Internet. However, the appletviewer utility provides menu commands that you
can use to inspect an applet's properties such as its <applet> tag settings and other
information that might be useful for debugging.

The sample applet's code begins in the usual way by importing the packages and classes
it needs. In this case, I imported only the specific classes used in the program. Most of the
time, you can begin your applets like this:

import java.applet.Applet;
import java.awt.*;

The first line imports only the Applet class — other classes in the java.applet package are
not often needed. The second line imports all AWT classes. Remember, however, this
does not import any classes in AWT subpackages such as java.awt.color and
java.awt.event. To import those packages requires additional import statements. After
these steps, extend the Applet class as a new public subclass named the same as its .java
source code file:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

349

public class AppletADay extends Applet {
...
}

All AWT applets have that same general form. Inside the class, this method starts the
applet's ball rolling:

public void init() {
...
}

The browser calls the init() method to start the applet after its class file has been loaded,
usually from the Web server over the Internet into the user's browser. Inside init(), insert
the statements you want the applet to perform. Here, the program sets the background
display color to gray (a standard applet convention) and creates a String object. The last
statement shows an important aspect of applet programming:
add(new TextArea(s, 4, s.length()));

Applets are actually specialized containers to which you can add GUI components such
as text and buttons. You don't have to specify exactly where the objects appear. Instead,
as explained more fully in Chapter 21, a layout manager determines the objects' relative
locations. In this case, the program simply adds a new TextArea object (one of AWT's
many classes), displaying the object's text.

Creating AWT Applications
You can also write AWT applications that display GUI elements in a stand -alone window.
The programming techniques are the same for applets and applications (except for the
security restrictions already mentioned), but applications always run on their own. They
don't require a Web browser or the appletviewer utility.

Listing 20-2, SimpleApp.java, shows a rudimentary stand-alone AWT application. As in
the preceding applet, the stand-alone program merely displays a string in a window.
Figure 20-3 shows the application window running under Microsoft Windows 98. As
with applets, your display may differ from the one shown here depending on your
operating system and GUI desktop.

Insert fg2003.jpg

Figure 20-3
SimpleApp is a stand-alone AWT application running here under Microsoft
Windows 98.

Listing 20-2
SimpleApp.java
001: import java.awt.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

350

002:
003: public class SimpleApp {
004: public static void main(String args[]) {
005: System.out.println("Creating application window...");
006: Frame f = new Frame("Application Frame Window");
007: String s = "Press Ctrl+C to close this window!";
008: f.add(new TextArea(s, 4, s.length()));
009: f.pack();
010: f.show();
011: }
012: }

Compile and run stand-alone AWT applications the same way you do those that run in a
text terminal or a terminal window. For example, in this case, enter the following two
commands at a terminal command -line prompt:

javac SimpleApp.java
java SimpleApp

When you do this, you will notice that you cannot close the resulting window by clicking
its close button. This is because the program provides no code that responds to events,
and therefore the only way to end the program is to switch back to the terminal window
from which you started it and press Ctrl+C. (If that doesn't work, try Crtl+Z, Ctrl+X, or
Ctrl+Break.)

Note

Obviously, not being able to close a stand-alone application's window is a
serious bug. I didn't include the necessary code to do that, however,
because to understand how to write that code, you first need to examine
the AWT's two event-handling models as explained in the upcoming
section, "Event Models."

The SimpleApp program demonstrates a few important aspects of AWT application
programming. Like text-based Java applications, the main public class, SimpleApp,
which is named the same as the source code file, SimpleApp.java, provides a main()
method. The first statement shows that, even though this is a GUI program, it can still
write strings such as Creating application window... to the terminal window. This is often
a useful debugging device for displaying the values of variables at strategic locations.

To create a graphical window, the program instantiates the AWT Frame class, using the
statement

Frame f = new Frame("Application Frame Window");

That doesn't cause the window to appear. It merely creates the necessary container for
holding other components. In this case, the program adds only one such component by
calling the Frame class's add() method using the statement

f.add(new TextArea(s, 4, s.length()));

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

351

As in the applet demonstration, the only component here is a TextArea object, to which
the program passes a string for display. Still, nothing is actually shown on screen until
two more statements are executed:

f.pack();
f.show();

Calling pack() causes the frame window to be sized according to the rules of its current
layout manager. The manager considers the sizes of any components in the frame, and it
sizes the window to be large enough to display its contents, in this case, the TextArea
component and string. After this step, calling the Frame class's show() method displays
the window along with its components.

To Swing or Not to Swing?
Sun Microsystems now recommends that applets and applications use the newer Swing
classes in place of AWT components. If you are skeptical about this recommendation,
you are in good company. Even though it appears that Swing is destined to become the
more popular choice, Sun isn't the first software company to introduce a new technology
and then recommend that everybody suddenly start using it! To help you choose between
AWT and Swing, following are a few pros and cons of each.

Let's start with AWT's negatives. Over time, one of AWT's main features has proven to
be one of its major pitfalls — namely its reliance on the operating system's GUI elements.
Originally, this seemed like a good idea, but in practice this approach has led to several
problems:

* Operating system windows and components are heavyweight objects in the sense
that they consume system resources that are interfaced through Java objects.
Using AWT, not only does a program own an operating system GUI object such
as a button, but the program also must maintain an associated Java object to
interface that GUI element. AWT components are not very efficient in terms of
system resources.

* Small differences between native GUI elements can add up to big problems for
applets and applications. For example, a pop-up menu under the KDE desktop
may differ in appearance from one on a Macintosh display or in Windows. It turns
out to be very difficult for developers to allow for these and other minor
differences, causing minor but embarrassing display quirks that are almost
impossible to eradicate.

* AWT supports two event models, leading to much confusion among developers.
Although the newer delegation model was introduced for AWT long before
Swing became available, Swing uses only the newer model, and, therefore, using
Swing might help ensure more consistent code development and, potentially,
result in fewer bugs.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

352

* AWT tends not to be as easily extended as Swing, which limits certain advances
that are becoming more and more important, especially as the Internet expands.
For example, Swing supports the concept of assistive technologies — those that,
for instance, might be used to provide alternative computer input devices for
people who for physical reasons cannot use a mouse or keyboard. Assistive
technologies might include voice-activated commands for the blind or alternative
display-selection methods that don't require hands and fingers. AWT as well as
most other GUI APIs and development systems provide no similar assistive
support techniques.

Given those considerations, many developers are shunning the AWT in favor of Swing.
Although Swing offers similar tools as the AWT, the toolkits differ primarily in the
following ways. The following points are considered to be Swing's key advantages:

* Swing uses no native operating system code. A Swing button is provided for
entirely by Swing's own classes and is not merely an interface to an operating
system GUI element. For this reason, Swing objects are said to be lightweight,
and they are more efficient in terms of system resources.

* Swing makes it possible to completely separate the GUI from the application's
content. In AWT programming, the application's code tends to be closely tied to
its interface. There isn't anything wrong with this approach, but in many cases,
separating the interface from the application helps reduce complexity and
therefore may simplify development and debugging.

* Swing is more easily extended than AWT. Because Swing uses no native GUI
code, a button and other components can be easily programmed to display
graphics and text even if the operating system provides no such capabilities. This
flexibility also promotes some interesting new GUI techniques such as support for
HTML tags in button and text labels.

* As mentioned, Swing provides for assistive technologies such as voice command-
driven and other alternative input and output systems. In the near future, this may
become one of the most important considerations for using Swing.

* Swing provides common look-and-feel interfaces for popular systems such as
Windows and Motif. You and your programs' users may select among these
appearances regardless of the local operating system. Frankly, I hesitate to join
those who list this Swing feature as a key advantage, but I seem to be in the
minority among this issue's voices. You decide.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

353

* Swing is especially attractive for X and Solaris systems because these use a
networked client-server model for their graphical interfaces. Because Swing
eliminates the use of native operating system GUI elements, programs that use
Swing on these systems should run more smoothly than AWT applications, which
may lead to relatively increased network traffic. This is not much of a
consideration, however, with single-user PCs and Macs, including single-user
Linux systems that run X.

Note

Although I have come across obscure notes and references that suggest it
may be possible to combine heavyweight AWT and lightweight Swing
components, this is probably never a good idea and will almost certainly
lead to display problems. For this reason, it is even more important to
carefully consider your choice of tools. After basing your program on one
toolkit, switching to the other may mean completely rewriting your program
from scratch!

Despite Swing's allure, this newer toolkit is not without its criticisms, and there are some
drawbacks to using Swing that you should consider before abandoning AWT. Be aware
of the following facts before deciding to become a Swinger:

* Early browsers do not support Swing components. In addition, to run Swing
applets, users must install the Java 2 plug-in, available for free from Sun (see
Chapter 21). Browsers that support only the JDK 1.0 cannot use Swing applets.
Likewise, systems with only JDK 1.0 runtime support cannot run Swing
applications.

* HTML <applet> tags cannot directly load Swing applets, even in browsers in
which the Java 2 plug-in is properly installed. Sun provides a free conversion
utility to convert <applet> tags for use with Swing applets (again, see Chapter 21
for details). This utility is easy to use, but it means an extra step in Web page
development.

* For experienced Java and AWT programmers, Swing means learning yet another
new set of classes and programming techniques. Because Swing is especially
intended for large-scale projects, if you already know your way around AWT, you
might consider continuing to use it for moderately sized applets and applications.
Many existing programs use AWT, and you can save a lot of time and effort
basing new code on source code files found on the Internet. Because Swing is
only now core to Java 2, there aren't as many Swing sources available as there are
for AWT.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

354

* Using native GUI elements, while potentially leading to minor display anomalies,
is not a bad idea. It is reassuring to know that your Java programs' users will see
GUI objects that are familiar to them. As I mentioned, I am unconvinced that
providing users with a choice of look-and-feel appearances is necessarily an
improvement in the use of GUI operating systems. However, it's good to keep in
mind that Swing lightweight components use system resources more efficiently
than do AWT heavyweight components.

If you still can't decide, I suggest you learn how to use AWT (concentrating especially on
this chapter's information on the newer delegation event model, which Swing also uses).
Compile and run the examples in this chapter, and then compare them with the similar
examples in Chapter 21. This will help you choose the toolkit that makes the best sense
for your application.

Finally, don't be concerned that AWT will suddenly "go away." There are too many
existing applets and applications based on AWT for that to happen anytime soon.
Although if you examine Java 2's source code and online documentation, you will come
across numerous "deprecated" AWT class methods, these are almost entirely related to
the older inheritance event model. If you use the newer delegation model, your AWT
code should be supported well into the future. Besides, a lot of Swing is based on non-
component classes in the AWT, and most Swing applications therefore import both AWT
and Swing packages. So, even if you decide to move to Swing, you'll still use many of
the AWT classes described here.

Event Models
One of the key features of a GUI is its asynchronously interactive nature. GUIs are busy
environments, posting and responding to all sorts of events that indicate activities such as
windows that need repainting and buttons that users have clicked. Numerous
programming systems have been available for writing this code — generally know as
event handlers — and Java is no different.

However, unlike other systems, Java's AWT provides two very different event handling
models. The older and original model, which dates back to the JDK 1.0, is called the
inheritance model. The newer model, which was introduced in JDK 1.1 and remains the
preferred choice today, is called the delegation model. Both models are still fully
supported in Java 2, but you should use the delegation model in new code. Many of the
inheritance model's methods have been deprecated. However, if you have code that uses
the old model, this is no cause for alarm. It is highly unlikely that Java will drop support
for the older event handling techniques.

The following sections introduce each of the AWT's event handling models. Readers who
plan to use Swing as explained in Chapter 21 should read "The Delegation Model"
following the next section because this is the model that all Swing programs use.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

355

The Inheritance Model
As its name suggests, the inheritance model relies on subclassing to provide event
handlers. With this technique, a program extends an existing AWT class and provides
one or more methods for responding to specific events. For example, the Button class
provides a method, mouseDown(), called when the mouse cursor is clicked inside the
button object. To respond to that and other events, you simply extend the Button class
and override the appropriate method.

Note

If you are skipping around in this book, be aware that this section
describes the older event handling model in the AWT. All such methods
such as mouseDown(), inherited from Component, are now deprecated,
and these methods should not be used in new code.

The main drawback to methods such as mouseDown(), although intuitive to use, is that
they require programs to extend a class in order to use a GUI element. This tends to lead
to more classes than the program would otherwise need. Consequently, most Java
programmers don't use methods like mouseDown(). Instead, the more typical approach is
to implement either an action() or handleEvent() method as found, for example, in the
Applet class. This allows the program to receive all events for specific objects — but it
also requires the program to pass along other events that it doesn't process so as to not
interrupt the GUI's other activities.

To demonstrate this approach, which is typical of other non-Java GUI programming
systems, Listing 20-3, BackColor.java, is a small applet. Run it as you did AppletADay
earlier in this chapter by opening the BackColor.html file in your Web browser. Or, you
can load BackColor.html into the appletviewer utility. Click the button in the window to
change the background color at random.

Listing 20-3
BackColor.java
001: import java.applet.Applet;
002: import java.awt.*;
003: import java.util.Random;
004:
005: public class BackColor extends Applet {
006: Random gen; // Random number generator for color selction
007: String buttonLabel = "Click Me!";
008:
009: // Initialize applet
010: public void init() {
011: gen = new Random();
012: Button colorButton = new Button(buttonLabel);
013: add(colorButton); // Added to Applet container
014: }
015:
016: // Respond to button click

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

356

017: public boolean action(Event evt, Object what) {
018: Color c;
019: if (buttonLabel.equals(what)) { // Is it our button?
020: do {
021: c = new Color(gen.nextInt());
022: } while (c == getBackground());
023: setBackground(c);
024: repaint();
025: }
026: return true; // Kill event
027: }
028: }

Note

Compiling the demonstration program with the command javac
BackColor.java produces a "deprecation" warning. Use the command -
line option -deprecation to show that this happens because of the
deprecated action() method. The program still compiles correctly, and it
runs harmlessly, but the compiler warns you that it uses the old-style
inheritance event model.

The BackColor class extends Applet (see 005) and declares two variables. One is a
Random generator for selecting background colors, and the other is a String for the
button's label. Method init(), as in most AWT applets, initializes the applet when it is
loaded into a Web browser or started by the appletviewer utility. Inside init(), the
Random generator is created, after which a Button object is instantiated and added to the
applet with the statements

Button colorButton = new Button(buttonLabel);
add(colorButton);

This is a typical way to add a GUI component to a window or applet. However, because
we are using the older inheritance event model, we also need a separate method to
perform an action when the button is selected. In this case, the program overrides the
Applet class's action() method (see lines 017-027).

One problem with this approach is immediately obvious. Because action() receives all
events intended for the applet, the program must determine which object fired the event
in question. We assume here that the action is the button's selection, since there aren't any
other "action" type events for buttons; however, other GUI objects might also require
determining the type of event (the next example shows how to do that). Line 019
compares the button's text with that of the Object what parameter passed to action(). If it's
our button, the background is repainted in a different color selected at random. (If you are
uncomfortable with this technique of distinguishing the selected button, join the club.
There are other ways to do this, but none is much better than the one shown here.)

The final action() statement at line 026 returns true, which tells the AWT that the event
has been processed. If action() returns false, the event is propagated up the inheritance

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

357

chain until it is handled. This is the source of the term inheritance model. The program
relies on class inheritance to process GUI events.

Unfortunately, forcing programs to handle all events makes the code prone to all kinds of
errors. Critical events can be too easily killed by accident, and events can be processed
but allowed to percolate upwards, and be handled more than once. Bugs arising from
these errors are common in older Java applets and applications. One solution is to extend
the Button class and provide code for a specific event. Using this technique, the program
might create a new class like this:

class NewButton extends Button {
 // Constructor
 NewButton(String label) {
 super(label); // Call ancestor constructor
 }
 // Event handler
 public boolean mouseDown(Event evt, int x, int y) {
 // perform action for mouseDown event
 return true; // Kill event
 }
}

Although this technique works, it tends to bloat the program with classes and methods
that typically add nothing significant to the class, but merely call code written elsewhere.
For example, NewButton's constructor has nothing new to perform, but it still is needed
in order to call the ancestor constructor. Also, the mouseDown() method, which might
perform real work, more often simply calls another method since other objects such as
menu commands probably need to perform the same operations. In short, we have gone
to all the trouble of creating a new class without gaining any real benefits.

For that reason, Java programmers have typically used the action() method described
before, or another even more low-level method, handleEvent(). Listing 20-4,
MouseXY.java, demonstrates how to use the method to intercept mouse events intended
for an AWT applet. After compiling the program, run it by loading MouseXY.html into
your Web browser or the appletviewer utility. When the applet window appears, move
the mouse cursor inside to see its relative screen coordinates. If you move the mouse
outside of the window, a message appears telling you to move it inside.

Listing 20-4
MouseXY.java
001: import java.applet.*;
002: import java.awt.*;
003:
004: public class MouseXY extends Applet {
005: String location; // String for X=0 Y=0 display
006:
007: // Initialize applet variables and window
008: public void init() {
009: setBackground(Color.yellow);
010: resize(200, 100);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

358

011: location = new String("Move mouse inside window");
012: }
013:
014: // Paint the location string inside window
015: public void paint(Graphics g) {
016: g.drawString(location, 10, 10);
017: }
018:
019: // Create the location string from x and y
020: public void makeString(int x, int y) {
021: location = new String(
022: " X=" + String.valueOf(x) +
023: " Y=" + String.valueOf(y));
024: }
025:
026: // Handle all events for this applet
027: public boolean handleEvent(Event evt) {
028: boolean eventHandled = false;
029: switch (evt.id) {
030: case Event.MOUSE_DOWN:
031: case Event.MOUSE_UP:
032: case Event.MOUSE_DRAG:
033: case Event.MOUSE_ENTER:
034: case Event.MOUSE_MOVE: {
035: makeString(evt.x, evt.y);
036: repaint();
037: eventHandled = true;
038: break;
039: }
040: case Event.MOUSE_EXIT: {
041: location = new String("Move mouse inside window");
042: repaint();
043: eventHandled = true;
044: }
045: }
046: if (eventHandled)
047: return true;
048: else
049: return super.handleEvent(evt);
050: }
051: }

Note

As with preceding sample applet, compiling this program with the
command javac MouseXY.java produces a "deprecation" warning due to
the use of the outdated handleEvent() method. However, the program still
runs as intended.

MouseXY.java shows the most typical techniques in AWT applets and applications to
handle events using the outdated inheritance model. Because the handleEvent() method
receives all events intended for this component, it usually contains a large switch

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

359

statement such as listed here at lines 029-045. Actually, this is a relatively small switch
statement — in a real application, this code might go on for dozens and dozens of lines.
Not only is this type of programming non-object-oriented, but it is prone to errors. How
easy it is to leave out a critical event type, or to cause a hard-to-find bug by forgetting a
needed break statement!

Nevertheless, it's a good idea to understand how handleEvent() works, if only to be
prepared to support older code (or even better, to revise it using the newer model). Events
are objects of the Event class, which use integer identifier values such as MOUSE_UP
and MOUSE_MOVE to represent specific types of events. In this case, most mouse
events are handled similarly by creating a string that shows the mouse cursor's X and Y
location, and then painting that string in the applet window by calling repaint(). An
exception is the MOUSE_EXIT event (see lines 040-044), which in this example changes
the string to a message that tells the user to move the mouse back inside the window.

Notice that in all cases, if an event is handled, handleEvent() must return true. If an event
is not handled, the method returns false. It also calls the ancestor handleEvent() method
(see line 049). These critical actions ensure that all events are properly handled. But again,
these requirements are easily misapplied, leading to nasty bugs.

If you absolutely must use the older inheritance event model, the preceding discussions
and sample programs will at least help you get started. However, I don't want to waste
any more space on outdated techniques. As the next section explains, the newer
delegation model offers a far superior way to handle GUI events.

The Delegation Model
The delegation event handling model was added to the AWT starting with the JDK 1.1
and is fully supported in Java 2's newest JDK release (1.3 as of this writing). For new
AWT applets and applications, you are urged to use this model over the outdated
inheritance model described in the preceding section. Also, if you plan to use Swing
components as described in Chapter 21, you must use the newer delegation model.

Using the delegation model, event handling is fully object-oriented. Events are objects of
classes derived from AWTEvent. To handle an event, a program delegates an event
listener, which can be any object of a class that implements the EventListener interface, a
member of the java.util package. Listing 20-5, Delegate.java, demonstrates how to use
the delegation event model to create two buttons in an applet window. Compile the
program as usual, and then load the Delegate.html file into your browser or the
appletviewer utility. Click one of the buttons to toggle it and the other button on and off.

Listing 20-5
Delegate.java
001: import java.awt.*;
002: import java.awt.event.*;
003: import java.applet.Applet;
004:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

360

005: public class Delegate extends Applet {
006:
007: // Define two AWT button objects
008: private Button button1 = new Button("Click This!");
009: private Button button2 = new Button("Click Me!");
010:
011: // Declare an inner class for the listener object
012: // Toggles between the two buttons
013: class ButtonListener implements ActionListener {
014: public void actionPerformed(ActionEvent e) {
015: if (e.getActionCommand().equals("button1action")) {
016: button1.setEnabled(false);
017: button2.setEnabled(true);
018: } else {
019: button1.setEnabled(true);
020: button2.setEnabled(false);
021: }
022: }
023: }
024:
025: // Applet class constructor
026: public Delegate() {
027: ButtonListener actionObject = new ButtonListener();
028: button1.setActionCommand("button1action");
029: button1.addActionListener(actionObject);
030: button2.setActionCommand("button2action");
031: button2.addActionListener(actionObject);
032: button1.setEnabled(true);
033: button2.setEnabled(false);
034: add(button1);
035: add(button2);
036: }
037: }

The Delegate.java program's Delegate class extends Applet. Inside the class, two AWT
Button objects are created. Following this, an inner class at lines 013-023 creates the code
that is performed when one of the buttons is selected. This class doesn't have to be inside
the extended Applet class, but it is typically placed there so it can refer to that class's
members. In this case, the code calls setEnabled() to toggle the two button objects on and
off.

The inner ButtonListener class implements ActionListener, one of several different types
of listener interfaces that AWT provides. ActionListener specifies a single method
declared as

public void actionPerformed(ActionEvent e);

To create an ActionListener object, simply define a new class such as ButtonListener in
the sample program and provide the contents for that method. Inspect the ActionEvent
parameter to determine facts about this event — in this case, to find out which button was
selected.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

361

The program's constructor at lines 026-036 shows how to connect a GUI object such as a
Button to an event listener. First, create the listener object as shown at line 027. Then,
perform two steps to define an action label and connect the GUI object to the listener:

button1.setActionCommand("button1action");
button1.addActionListener(actionObject);

When the object fires an action-type event, it sets the action command string into the
ActionEvent object and then passes that object to the registered listener, actionObject.
That same action object is used for both buttons, but the program is free to define as
many listeners as needed. Conversely, although not shown here, any GUI object can have
multiple listeners, all of which receive any events the object fires. However, unlike with
the inheritance event model, each event sent to a listener is a separate and distinct object.
Consequently, it is not possible for objects to communicate by modifying event fields. (If
you need to do that, define a primary listener object to receive the events for all
components that need to communicate with one another.)

The Delegate.java listing works well enough, but it is not the only way, nor is it
necessarily the best way, to create event listeners. The next sections show other
techniques that you are more likely to use in practice.

Programming with the AWT
Programming with the AWT requires mastering the concepts of the delegation event
model (as introduced in the preceding section), AWT component classes, and layouts
(used to organize components in windows). The following sections introduce these topics
(layouts are further explained in Chapter 21). Except for component classes, much of this
information applies also to Chapter 21's discussion of Swing classes.

AWT Events and Listeners
Table 20-1 shows AWT's event classes and their associated listener interfaces. Classes
marked with an asterisk are not typically used in applications. Also, be aware that
AWTEvent is a member of the java.awt package. All other classes and interfaces are
members of java.awt.event.

Table 20-1
AWT Event Classes and Listener Interfaces

Event Class Event Listener Purpose

ActionEvent ActionListener Fired for an object's primary
action such as when a button is
clicked or a menu item is
selected.

AdjustmentEvent AdjustmentListener Fired by adjustable objects such
as a scroll bar when its size

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

362

changes.

AWTEvent * AWTEventListener * Primarily used in creating event
monitors, but not for general use.

ComponentEvent ComponentListener Fired when a GUI component
moves or changes in size or
visibility. Strictly for
notification; AWT takes care of
any painting needed in response
to the change.

FocusEvent FocusListener Fired to indicate that a
component has gained or lost the
keyboard focus.

none HierarchyBoundsListener * Fired when an ancestor
component is moved or resized.
Intended strictly for notification
purposes.

HierarchyEvent * HierarchyListener * Fired when a component or a
container's hierarchy changes —
for example, when a
component's show() method is
called. Intended strictly for
notification purposes; AWT
handles all necessary reactions
internally.

InputEvent InputListener Root class for all input types of
events, often used to "consume"
an event such as a button
selection and thus prevent it
from being handled normally.

InputMethodEvent * InputMethodListener * Fired to indicate a change made
to a text item (see TextEvent).

ItemEvent ItemListener Fired to indicate that an item in
an object such as a List has been
selected or deselected.

KeyEvent KeyListener Fired when a keystroke is
performed for an object.

MouseEvent MouseListener Fired to indicate a mouse button
has been clicked or released, or
when the mouse cursor enters or
leaves a GUI object's
boundaries.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

363

none MouseMotionListener Use this interface to receive
mouse movement and also click-
and-drag events.

TextEvent TextListener Fired to indicate that a text item
has been changed.

WindowEvent WindowListener Fired when a window changes
size or state.

* Not typically used in applets or applications

As you can see in Table 20-1, most listener interfaces have associated event classes,
using an easily remembered naming convention. In general, the class <Name>Event is
matched by a listener interface <Name>Listener. To register a listener for a GUI object,
call an add<Name>Listener() method and pass to it an object of a class that implements
the interface. For example, to respond to mouse events for a GUI object, first create a
class the implements the appropriate interface:

class MyMouseListener implements MouseListener {
 public void MouseClicked(MouseEvent e) {
 // ... insert code to respond to mouse click
 }
 // ... other interface methods
}

Next, create the component object, and call the appropriate add<Name>Listener()
method to register the listener. Often, you will do this in the class's constructor. For
instance, to listen for mouse events for an applet's window, simply use this statement:

addMouseListener(new MyMouseListener());

There's usually no need to retain a reference to the constructed MyMouseListener()
object because its sole purpose is to respond to events, and the program probably has no
need to call the object's methods or use it in any other way. Or, even easier is to have the
applet or other class implement a listener interface, and then register itself using a
statement such as

addMouseListener(this); // !!!

As these and future sample statements show, the delegation model is extremely flexible.
A GUI component can be made to respond to its own events, or listeners can be
completely separated from the objects that fire the events. Unlike with the inheritance
model, with the delegation model you can write separate GUI and action classes and, in
that way, simplify future visual improvements. As a current example, it is far easier to
move code based on the delegation model from AWT to Swing than it is to revise an
older inheritance-model application.

Note

To illustrate the flexibility of the delegation event model, sample listings in
this chapter employ several different techniques to create GUI objects and
associate them with event listeners. The inconsistencies among the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

364

listings may seem confusing at first, but I wrote the examples specifically
to show several different and typical techniques used with the delegation
event model.

Adapters and Anonymous Classes
A drawback of using listener interfaces (refer back to Table 20-1) is that a class must
supply methods for all those defined in the interface. For example, a class that
implements MouseListener needs bodies for all of that interface's methods:

class MyMouseListener implements MouseListener {
 public void mouseClicked(MouseEvent e){ ... }
 public void mousePressed(MouseEvent e) { ... }
 public void mouseReleased(MouseEvent e) { ... }
 public void mouseEntered(MouseEvent e) { ... }
 public void mouseExited(MouseEvent e) { ... }
}

Most often, however, you probably need to respond to only selected events. So you don't
have to implement the other unneeded methods, the AWT provides a set of abstract
adapter classes, but only for interfaces that declare multiple methods. Table 20-2 lists the
AWT's adapter classes:

Table 20-2
AWT Adapter Classes

Adapter Class Implements

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

HierarchyBoundsAdapter HierarchyBoundsListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Each adapter class implements the associated interface and provides empty bodies for all
defined methods. To use an adapter, extend it into a new class and override the event
methods you need. Simply ignore the others. Remember that abstract adapters exist only
for interfaces that declare multiple methods. Interfaces such as ActionListener that
declare only one method do not have, nor do they need, associated adapter classes. In
general, to use single-method interfaces, implement the interface in your listener class.
To use multiple-method interfaces, extend an adapter class in your listener class or
implement the interface and provide bodies for all declared methods.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

365

Another useful trick of the trade uses anonymous classes to create listener methods. An
anonymous class is constructed and programmed in line. The class has no name and
there's no object reference. At first, the construction of an anonymous class looks a bit
odd. Here's a stripped down sample based on the MouseAdaptor class:

new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 // ... code for mouse click events
 }
}; // Semicolon required!

In effect, that creates an anonymous class that extends MouseAdapter and, as such,
inherits that class's members. The new nameless class overrides the inherited
mouseClicked() method to respond to mouse-click events. Notice that new creates an
object of the anonymous class — in other words, this is a statement, and therefore, it
must end with a semicolon. Another way to create an anonymous class is to specify an
interface using code such as

new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // ... code for action event
 }
}; // Semicolon required!

That creates an anonymous class that implements the ActionListener interface and
provides a body for that interface's only method, actionPerformed(). Out of context, the
anonymous classes as programmed here are impractical. But when used to create an
object that is passed to another method, anonymous classes are invaluable tools. For
example, an applet might create a Button using the statement

Button clickMe = new Button("Click Me!");

To provide a listener for the button's action event, fired when the button is clicked, follow
that statement with a call to addActionListener():

clickMe.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // ... code for action event
 }
});

That's all you have to do to create an event handler for the button — simply insert your
code where the comment indicates. The anonymous class implements the ActionListener
interface and provides code for the actionPerformed() method. When the user clicks the
button, this code is executed directly without any need to filter out other events. However,
the form of this programming may look a little strange — notice especially the
punctuation on the last line that closes the anonymous class declaration with a brace and
ends the method call with a closing parenthesis. Again, this is a statement, and so it must
end with a semicolon.

A more complete example better illustrates anonymous classes. Listing 20-6,
RandomColor.java, displays a button in an applet window. Clicking the button randomly
changes the applet's background color. This is the same visual effect demonstrated earlier

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

366

in this chapter's BackColor.java program (Listing 20-3) but that uses the newer
delegation event model to handle button clicks. You might want to compare the two
listings.

Listing 20-6
RandomColor.java
001: import java.applet.Applet;
002: import java.awt.*;
003: import java.awt.event.*;
004: import java.util.Random;
005:
006: public class RandomColor extends Applet {
007:
008: // Constructor
009: public RandomColor() {
010: // Create GUI button object and random generator
011: Button clickMe = new Button("Click Me!");
012: final Random gen = new Random();
013:
014: // Create listener using an anonymous class
015: clickMe.addActionListener(new ActionListener() {
016: public void actionPerformed(ActionEvent e) {
017: Color c;
018: do {
019: c = new Color(gen.nextInt());
020: } while (c == getBackground());
021: setBackground(c);
022: repaint();
023: }
024: });
025:
026: // Add button to Applet container
027: add(clickMe);
028: }
029: }

The program's RandomColor class extends Applet, but unlike the earlier program, all of
the code is contained in the class constructor. Two objects are created: clickMe of the
AWT Button class, and gen, of the java.util package's Random class. An anonymous
class is used to create an ActionListener object passed to the clickMe button's
addActionListener() method (see lines 015-024).

Note

As mentioned, when using the anonymous class technique illustrated here,
it's important to carefully match opening and closing braces and
parentheses. For example, line 024 provides the closing brace that ends
the anonymous ActionListener class created starting at line 015. The
closing parenthesis and semicolon at line 024 end the statement that calls
addActionListener() (line 015). A program editor such as the UNIX and

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

367

Linux Emacs that automatically counts and matches these symbols is
invaluable in this sort of programming.

The actionPerformed() method — the only one declared by the ActionListener interface
— changes the applet's background color when the button is clicked. This portion of the
program is the same as the earlier demonstration, but this time there is no need to
examine the type of event because the button object itself provides its own event handler.
This is obviously a much more object-oriented approach than is possible with the older
event model.

AWT Applications
One drawback in using anonymous classes as described in the preceding section is that
inner classes cannot refer to non-final instance variables. This is why Random gen is
declared to be final. (See line 012 in Listing 20-6.) Also, an anonymous class obviously
cannot have a constructor since the class has no name! Those aren't terribly serious
complaints; however, many programmers find the technique demonstrated in the
preceding listing to be somewhat obscure.

A more straightforward way to create an action listener for a GUI object such as a button
is to have the object's container provide the action method. That container might be an
applet, or it can be a Frame object for a stand -alone window. With this approach, it is
again necessary to distinguish among multiple components that register the same listener.
In fact, it is possible for this technique to degenerate to the level of the older inheritance
model, at least in the sense that a single listener can be made to handle all events. This is
rarely a good idea, but at least the newer model's flexibility lets you decide which
technique to use.

Listing 20-7, ColorApp.java, shows this common AWT technique and also demonstrates
how to create a stand-alone AWT application that uses the delegation event model. The
program is similar in operation to the preceding one, but you can run it using the java
interpreter.

Listing 20-7
ColorApp.java
001: import java.applet.Applet;
002: import java.awt.*;
003: import java.awt.event.*;
004: import java.util.Random;
005:
006: public class ColorApp
007: extends Panel
008: implements ActionListener {
009:
010: protected Random gen = new Random();
011:
012: // Constructor
013: public ColorApp() {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

368

014: Button clickMe = new Button("Click Me!");
015: clickMe.addActionListener(this);
016: add(clickMe); // Add button to panel
017: }
018:
019: // The button's event handler
020: public void actionPerformed(ActionEvent e) {
021: Color c;
022: do {
023: c = new Color(gen.nextInt());
024: } while (c == getBackground());
025: setBackground(c);
026: repaint();
027: }
028:
029: // The main program
030: public static void main(String[] args) {
031:
032: // Create frame and set its size
033: Frame frame = new Frame("Color Application Demo");
034: frame.setSize(250, 200);
035: frame.setLocation(50, 50);
036:
037: // End the program when the window is closed
038: frame.addWindowListener(new WindowAdapter() {
039: public void windowClosing(WindowEvent e) {
040: System.exit(0);
041: }
042: });
043:
044: // Add the ColorApp panel to the frame and show it
045: frame.add(new ColorApp(), BorderLayout.CENTER);
046: frame.show();
047: }
048: }

ColorApp.java illustrates several important AWT programming techniques. These same
techniques are used also in Swing programming, as introduced in Chapter 21. The entire
program takes place in a single class, ColorApp, declared as

public class ColorApp
 extends Panel
 implements ActionListener {
...
}

The class extends the AWT Panel class, which serves as a container for other GUI objects,
in this case a single button. The class also implements the ActionListener interface. As
already explained, this interface declares one method — actionPerformed() — and
therefore, our extended ColorApp class is required to provide a body for that method. As
you will see, attaching this to the button provides the code that is called when the button
is clicked.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

369

Exactly how to do that may not be immediately obvious if you haven't much experience
with the delegation event model. The key is found in the class constructor, repeated here
for close examination:

public ColorApp() {
 Button clickMe = new Button("Click Me!");
 clickMe.addActionListener(this);
 add(clickMe); // Add button to panel
}

The first statement creates the Button object. The second calls the button's
addActionListener() method. Passing this to that method registers the ColorApp object as
the listener for the button — thus, when you click the button, the program calls
ColorApp.actionPerformed(). Finally, the ColorApp constructor adds the button to the
container by calling the add() method inherited from Panel.

If there were other components in the window, they too could register the ColorApp
object (represented as this) for their listeners. However, as mentioned, when using this
technique, the listener's actionPerformed() method needs to distinguish among the
components to determine which one fired the event.

Of course, you also have to provide the code for the event handler itself. In this case, that
requirement is satisfied in the actionPerformed() method at lines 020-027. This is the
same code as in the preceding example program, but now that we are no longer using an
anonymous inner class, the Random gen object does not need to be declared final.

Because this is a stand-alone program, not an applet, it must have a main() method (see
lines 030-047). The first three statements in main() create a Frame object, which creates
the visual window and its title bar using the string shown. Normally, the window would
be only large enough to show its GUI objects — to make it large enough to be interesting,
the program calls the setSize() and setLocation() methods with arbitrary parameters.

The statements at lines 038-042 show a vital technique in creating stand-alone AWT
programs that use the delegation event model. Closing the program's window does not
automatically end the program. To do that, you must attach a window listener to the
window's frame. Carefully examine this code:

frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
});

You might recognize the form of this programming — it's another example of an
anonymous class, this time extended from the WindowAdapter abstract class. That class
provides several methods that you can use to program event handlers for actions such as
the window closing or being minimized. Here, we need to override only one method:
windowClosing(). When this event is received, the program calls System.exit() to end the
program. You may copy this code into any stand-alone AWT program, but don't use it in

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

370

applets. The programming also works in Swing programming (except that the frame
object is of the class JFrame — but more on that in Chapter 21).

Tip

For a list of the methods available in classes such as WindowAdapter,
consult the Java source code files in the java.awt.event package. Also
browse the online documentation if you downloaded and installed it.

Finally in the sample program, two statements add a ColorApp object to the frame and
show it. Remember that ColorApp extends Panel. In this case, the ColorApp object is
used as a surface that holds other components (a single button here). Just for the sake of
being different, I added a parameter that centers the panel within the frame:

frame.add(new ColorApp(), BorderLayout.CENTER);
frame.show();

In AWT programming, it is more typical to add components such as buttons directly to a
Frame object. However, using an intermediate Panel as shown here is a good way to
organize multiple objects. The technique is also used extensively in Swing programming.

Note

Some programmers question the preceding statements because they are
inside the ColorApp class. But there is nothing wrong with a method, but
not a constructor, creating an object of its own class. This technique also
is popular among Swing users.

AWT Classes
There isn't room in a single chapter to describe the entire AWT toolkit — it's a huge set
of classes. However, for reference and to help you locate more information about specific
classes, the following tables list and describe AWT's packages and many of their
significant classes. Table 20-3 lists all of AWT's packages. Most applets and applications
import all classes from at least the two packages, java.awt and java.awt.event.

Table 20-3
AWT Packages

Package Name Purpose

java.awt Main AWT classes and components. All GUI applets and
applications should import this package.

java.awt.color Color "space" classes mostly for photographic work, not for
common color use in windows.

java.awt.datatransfer Clipboard and other "transferable" data transfer tools.

java.awt.dnd Drag-and-drop tools. See also the subpackage in this set,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

371

java.awt.dnd.peer.

java.awt.event Delegation model event classes and interfaces. Most GUI applets
and applications should import this package.

java.awt.font Font and text support tools.

java.awt.geom Geometrical tools that support and supplement Java 2D graphics.

java.awt.im Input and text editing tools primarily for supporting different
locales and foreign languages. See also the supporting
subpackage in in this set, java.awt.im.spi.

java.awt.image Tools for images, raster images, buffering techniques, and color
models, primarily intended for photgraphic image work. See also
the supporting subpackage java.awt.image.renderable.

java.awt.peer See note *

java.awt.print Printing tools.

* This package's classes all contain the following note: "The peer interfaces are intended only for use in
porting the AWT. They are not intended for use by application developers, and developers should not
implement peers nor invoke any of the peer methods directly on the peer instances."

Each of the packages in Table 20-3 provides several classes. Table 20-4 lists some of the
classes from the main java.awt package that are of primary interest to applet and
application developers. AWT layout classes, used in AWT and Swing programming, are
described in Chapter 21.

Table 20-4
AWT Key Classes

Class Name Purpose

AWTEvent Superclass for AWT event classes (refer back to Table 20-1).

Button Selectable GUI button component.

Canvas Blank rectangular area for drawing graphics or for representing a
component's surface.

Checkbox Selectable check box component with optional text label.

CheckboxGroup Used as a container to group multiple check box objects.

CheckboxMenuItem Menu item that can be toggled on and off using a check mark
symbol or check box.

Choice Pop-up menu of choices. See also PopupMenu.

Color Various standard named colors and their RGB values.

Component Superclass for all AWT GUI components such as buttons and
scrollbars.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

372

Container Superclass for all AWT objects that can contain other AWT
components. Applets, frames, and windows are examples of AWT
containers.

Cursor Encapsulates in a general way a GUI mouse cursor image.

Dialog Basis for dialog windows (see also FileDialog).

Dimension Utility class used to represent size information for components.

FileDialog File-load and file-save dialog windows.

Font General-purpose typographical font class, used also to associate
characters (symbols) and their glyphs (images).

Frame Basic window frame, typically used as the main container of a
stand-alone AWT application. See also Panel and Window.

Graphics Abstract class that serves as a graphics "context," enabling drawing
operations for components and other objects, and also provides
numerous graphics operations.

Graphics2D Extends the Graphics abstract class to provide enhanced support for
rendering 2D shapes and also for text objects and color
management.

Image Superclass for all AWT image classes such as found in the
java.awt.image package.

Label Single-line, static (non-editable) text label component. See also
TextArea.

List Scrollable list of selectable text items.

MediaTracker Utility class used in preparing animations. (However, see Chapter
23, "Graphics Techniques," for better animation techniques using
Swing components.)

Menu Used for creating pull-down menus in menubars.

MenuBar Encapsulation of a menubar typically attached to a window frame.

MenuItem Class for representing commands in a pull-down menu.

Panel Simple container for collecting and arranging GUI components,
and which may include other panels.

Point Utility class for representing X, Y screen coordinates.

Polygon Encapulation of a two-dimensional region, bounded by line
segments, but represented internally as a list of coordinates.

PopupMenu Extends the Menu class to provide a pop-up version of a pull-down
menu that can be displayed anywhere.

Rectangle Represents the concept of a rectangular region (not a visible
rectangle shape).

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

373

Robot A new Java 2 (JDK 1.3) class for use in creating auomated test
suites and self-running demonstrations.

Scrollbar Standard vertical and horonzontal scrollbar component.

ScrollPane Container class for implementing automatic scrolling operations for
other child components.

Shape Utility class for representing shape characteristics. Also provides
operations such as determining whether two shapes intersect.

SystemColor Represents colors symbolically as screen elements (for example,
the "window border color" and the "scrollbar color") instead of
using hues and color values.

TextArea Multiline, potentially editable, text component. See also Label.

Window Top-level window, with no border or menu. As a component
container, applications typically use a Frame object, which extends
the lower-level Window class.

Summary
* The AWT, Abstract Windowing Toolkit, provides numerous classes for

constructing graphical interfaces in Java applets and stand-alone applications.

* AWT components are said to be heavyweight, because they serve as interfaces to
native operating system GUI elements. An AWT button, for example, is merely
an interface to a native button object. This approach provides Java applets and
applications with a native look and feel, but in practice heavyweight GUI objects
can cause display quirks that are difficult to eradicate.

* Swing, the newest GUI toolkit on the block, largely replaces AWT components.
Swing components are lightweight because they use no native operating system
code. Swing components are more efficient, and they are more easily extended.
Swing's primary drawback is that it requires users to have a Java 2 runtime system
or browser plug-in. AWT, on the other hand, is more globally supported at this
time.

* The AWT supports two event models. The original 1.0 inheritance model filters
events though a component's class hierarchy until that event is handled. The
newer delegation event model registers an event listener with a component such
as a button. One advantage of the newer event model is that it sends only
registered events to listeners. The old model requires handling all events fired for
a GUI component. Swing also uses the newer delegation model for its event
handling.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

374

* The AWT provides several interfaces for creating classes to be used in making
event listener objects. Those interfaces that have multiple methods, such as
MouseListener, have associated abstract adapter classes (MouseAdapter for
example) that simplify creating listener objects. Any class may be used as an
event listener by either implementing a listener interface or by extending an
abstract adapter class, whichever is more convenient.

* For supporting the newer delegation model, Java 2 provides the concept of an
anonymous class. Using an anonymous class makes it possible to create event
listeners without the need to declare a named class or to retain a reference to an
object. However, the code for anonymous classes might look a bit strange at first.

* For reference, this chapter lists AWT's numerous packages along with many of
the more commonly used classes in the main java.awt package.

Chapter 21 Swing Applets and Applications

Every time a new GUI toolkit comes out, part of me wants to celebrate and the other part
wants to throw up my hands in frustration. Who needs another steep learning curve?
More to the point, what's the matter with AWT that requires an entirely new set of
packages and classes that, essentially, provide the same GUI components that Java
programmers already have?

Those are reasonable questions, but as this chapter suggests, there are several excellent
reasons to use the new Swing components in building applets and applications.

In This Chapter

* Introducing Swing

* Programming Swing applets

* Programming Swing applications

* Converting HTML <applet> tags

* Using containers and layouts

* Creating menus

Even long-time AWT fans are moving to Swing, primarily for the following reasons:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

375

* Swing components are lightweight, in the sense that they have no native peers in
the operating system. In other words, a Swing GUI object such as a button is
created entirely by Swing, not as an interface to a native object.

* Swing is now core to Java 2 and the JDK 1.3. It is no longer necessary to link to
compiled library files, and runtime support is easy to install on all supported
platforms.

* Swing supports the concept of "pluggable look-and-feel." This feature solves
annoying display problems common with the AWT, and it offers some additional
leeway in selecting among different appearances.

* Swing adds new capabilities such as support for assistive technologies that
provide alternate input and output facilities, such as voice-driven commands and
mouseless operation.

* Swing is more easily extended in other ways — for example, a button can now
display text and graphics, or even use HTML in its text label, even if such
capabilities are not provided by the native operating system.

The only significant downside to Swing is its relative newness, and consequently, its lack
of global support. However, unless you are using a really old browser, you can install the
free Java 2 plug-in to provide Swing support for Internet Explorer and Netscape. Free
runtime environments are also available for Solaris, Linux, and Windows, so there's no
reason to worry that time invested in learning Swing will be wasted.

Note

Swing components are Beans, designed to JavaBean specifications, for
use in visual development systems such as JBuilder and Visual Café.
Beans are useful for rapid application development (RAD) because they
let you design the GUI by clicking and dragging objects, and setting their
properties using specialized editors, instead of writing code to perform
those jobs. However, the generated Java source code ranges from pretty
good to pure junk — incredibly, some systems still generate code that
uses the old inheritance event model. Visual development systems have
many loyal fans, and some of them are excellent products. But do yourself
a favor and learn to use Swing as explained in this chapter and the next.
You can then choose a RAD developer, if you decide you need one.

Introducing Swing
Because Swing is based on AWT — many Swing classes extend those in the java.awt and
related packages — you can use much of what you already know about AWT
programming. However, there are some new techniques to master, and in this chapter I'll
concentrate on them to give you a flying start into Swing's way of doing things. Chapter
22, "Swing Components," covers a selection of Swing components. Obviously, I can't

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

376

hope to cover all of Swing in two chapters. My goal here is to introduce the key concepts
of Swing programming so you can dig further into this toolkit's classes more easily on
your own.

Tip

I mention this tip several times throughout the book, but it bears repeating.
Because Swing is so big, and there are so many classes to wade through,
if you haven't done so already, download and install Java's online
documentation before going any further. JavaDoc, as it is known, is an
essential tool for finding your way around Swing's library. I also find the
toolkit's source code files invaluable for exploring Swing declarations. If
you installed them (see Chapter 3, "Getting Started with Java 2"), you'll
find most of Swing's source files in the jdk1.3/src/javax/swing directory.

Swing Applets
To demonstrate Swing, this and the next section list simple applet and application
programs. As with AWT, a Swing applet runs in a browser. An application stands alone
and is run under the control of the Java interpreter. In past JDK incarnations, it was
necessary to specify paths and library files to compile and run Swing programs. These
steps are no longer required because Swing is now core to Java 2 and the JDK 1.3.

Listing 21-1, SwingApplet.java, shows a simple Swing applet. Compile it in the usual
way using javac, and then load the SwingApplet.html file (it's in the same directory as the
listing file) into your Web browser. Or, use the appletviewer utility to load the HTML file
and run the applet.

Note

Your browser must have the Java 2 plug-in to load and run Swing applets.
If you don't see the sample applet's text, or if you receive an error
message, consult Chapter 3's instructions for downloading and installing
the Java 2 plug-in. If you don't want to do that now, you can use the
appletviewer utility from the JDK 1.3 to view Swing applets. Figure 21-1
shows the program's window in appletviewer running under Microsoft
Windows 98:

insert fg2101.jpg

Figure 21-1
SwingApplet running in the appletviewer utility under Windows 98

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

377

Listing 21-1
SwingApplet.java
001: import javax.swing.*;
002: import java.awt.*;
003:
004: public class SwingApplet extends JApplet {
005: public void init() {
006: JLabel label =
007: new JLabel("Simple Java 2 Swing Applet", JLabel.CENTER);
008: label.setBorder(BorderFactory.createLineBorder(Color.black));
009: getContentPane().add(label, BorderLayout.CENTER);
010: }
011: }

The sample applet is deceptively simple looking, but it demonstrates a few key features
of Swing programming. First, you must import the javax.swing package — note that the
package name begins with javax, not java. Also, most Swing programs also import at
least the java.awt package (many use java.awt.event as well). Except for components and
containers, all of which are replaced by Swing classes, you will still use many AWT
classes in Swing programming.

Swing classes all begin with capital J (for Java, obviously) and are often used similarly to
their AWT counterparts. For example, line 004 extends the JApplet class where an AWT
applet would extend Applet. As with all applets, method init() initializes the program
when loaded into a browser. To provide a place to show some text in the window, lines
006-007 construct an object of the JLabel class. As you might expect, this class displays a
static string. Optionally, you can supply a second parameter as shown to position the text,
using the CENTER or other constants defined in the JLabel class.

Line 008 uses a handy Swing feature called a BorderFactory. Use this class to create
various styles of borders so that, as shown here, text and other objects are surrounded by
some space instead of being squished to the minimum size within their display spaces.
Line 009 is, perhaps, the most important of all in this demonstration:

getContentPane().add(label, BorderLayout.CENTER);

As the previous chapter explained, AWT programs typically add components directly to a
Frame container, which serves as the program's window and might also sport a title bar
and menu. Swing requires all components to be placed on something called the content
pane. That's not a class, but a description of a container, usually an object of type JPanel.
To get the current content pane, call getContentPane() and use the result's add() method
to insert components.

Tip

All top-level Swing containers (JFrame, JApplet, and JDialog) are
guaranteed to have a valid content pane, but you can also create one of
your own of any class that extends Container and add it to a top-level
container by calling setContentPane().

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

378

Converting Applet HTML Tags
Not evident from the preceding listing is a minor complication concerning a Swing
applet's HTML file. Unlike with AWT applets, the HTML <applet> tag cannot be used to
load a Swing applet's class file. Also, the browser mus t have the Java 2 plug-in properly
installed.

To connect the <applet> tag with the Java 2 plug in requires converting <applet> tags
using a free conversion utility available from Sun. To get the converter, first log onto this
Sun Web site:

http://java.sun.com/j2se/

Next, locate the Java™ Plug-in link under "Related Technologies." Click this link to go
to the Java Plug-in 1.3 page. You can download and install the plug-in, if you haven't
already done so, by clicking the link JRE 1.3 (includes Java Plug-in 1.3). After doing that,
click the link Java Plug-in 1.3 HTML Converter. Because the converter is a Java
application, there is only one version for all platforms. Page down until you see the link
Download Java Plug-in Software 1.3 HTML Converter. Click this link and follow
instructions to download and install the utility.

I installed my converter in my jdk1.3 main directory, but you can install the files
anywhere you like. To run the program, from a command-line prompt, enter the
following commands (or similar depending on your operating system). Windows users:
type backslashes in place of the slashes:

cd /jdk1.3/converter/classes
java HTMLConverter

You should now see the converter's window (see Figure 21-2). Enter or browse to the
directory containing the HTML files you want to convert, and then click the Convert
button. This processes all files with the filename extensions entered into the main screen's
second entry field. Notice that the program processes all matching files — it doesn't let
you specify an individual file to convert.

insert fg2102.jpg

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

379

Figure 21-2
Java 2's free HTML converter utility modifies <applet> tags for Swing applets.

Note

The HTML converter's directory browsing button didn't work correctly for
me, but perhaps this problem will be repaired by the time you read this. If
not, use my work-around. Create a subdirectory in jdk1.3/converter (I
name mine /html). Copy all HTML files to be converted to this directory,
and then enter that pathname into the converter's first entry field. Click
Convert. You can then recopy the converted files to their destinations.
Keep in mind that the program converts all matching files in all
subdirectories. Be sure that's what you want to do before clicking Convert!
Copies of converted files are stored in a backup directory, but processing
the same files twice, which is easy to do by mistake, erases the original
backups. (This program could use a little more design work.)

Before running the converter, try it on a test file. I have provided one for you in the
c21/SwingApplet directory, named SwingApplet-html.txt. I named the file this way to
prevent its accidental conversion. The original file's text looks like this:

<html>
<title>
SwingApplet
</title>
<body>
<h1>
SwingApplet
</h1>
<applet code = "SwingApplet.class" width = 260 height= 90>
</applet>
</body>
</html>

That's a standard way to load and display a Java applet in a Web page. The <applet> tag
is shown in bold. Unfortunately, this tag can't load a Swing applet. Instead, you must
convert the tag, using the free converter. Doing that changes the <applet> tag into an
<OBJECT>, which looks something like this:

<!––"CONVERTED_APPLET"––>
<!–– CONVERTER VERSION 1.3 ––>
<OBJECT classid= ...
...
</OBJECT>

If you examine the converted HTML text, you'll see there's a lot more to the conversion
than shown here. Since you will always use the conversion utility to create this text,
there's little point in trying to understand its every nuance. Frankly, the result is a bit
messy, but necessary so that, if users don't have the plug-in, they can get it quickly and
easily. But anyway, until Sun and the keepers of the world's Web browser protocols give

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

380

us something better, you must convert all <applet> tags this way so they can load Swing
applets.

Tip

Always keep a copy of your original HTML files before converting their
<applet> tags for use with Swing. Because some HTML editors might
have trouble displaying converted <applet> tags, it is probably best to edit
the originals and then reconvert them for Web page development. I edit
my HTML files using a text editor, so this isn't a problem for me. However,
some trial runs are called for before you trust using Sun's HTML converter
on your Web page files.

Swing Applications
You can also create a standalone Swing application. Listing 21-2, SwingApp.java, shows
the basic design. Compile and run the program as you do any other Java program, using
javac and the java runtime interpreter. Figure 21-3 shows the program's window as it
appears in Windows 98.

insert fg2103.jpg

Figure 21-3
SwingApp's window running in Windows 98

Listing 21-2
SwingApp.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class SwingApp {
006:
007: // Create application component pane as a JPanel container
008: public static JPanel createPane() {
009: JPanel pane = new JPanel();
010: JLabel label = new JLabel("Simple Swing Application");
011: pane.setBorder(
012: BorderFactory.createEmptyBorder(30, 30, 50, 75));
013: pane.add(label);
014: return pane;
015: }
016:
017: public static void main(String[] args) {
018: // Use system look and feel

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

381

019: try {
020: UIManager.setLookAndFeel(
021: UIManager.getCrossPlatformLookAndFeelClassName());
022: } catch (Exception e) { }
023:
024: // Create the top–level frame and its components
025: JFrame frame = new JFrame("Simple Swing Application");
026: JPanel components = createPane(); // Create components pane
027: frame.getContentPane().add(components, BorderLayout.CENTER);
028:
029: // End program when window closes
030: frame.addWindowListener(new WindowAdapter() {
031: public void windowClosing(WindowEvent e) {
032: System.exit(0);
033: }
034: });
035:
036: // Engage layout manager and display window
037: frame.pack();
038: frame.setVisible(true);
039: }
040: }

As mentioned earlier, Swing applications usually import at least three packages:
javax.swing, java.awt, and java.awt.event. Even though you are advised never to mix
Swing and AWT components, you will use classes from each toolkit, and the delegation
event model is largely the same for both.

A single class encapsulates the entire program. Its first static method, createPane() (this
can be named anything you like), constructs a JPanel object as a container to hold other
components. In this case, the only other such object is a JLabel with a text string. In
Swing programming, all components are usually added to one or more JPanel objects, not
to JFrame containers as in AWT. As explained for the sample applet in the preceding
section, BorderFactory provides some space around the component, a technique that is
generally preferred over attempts to preset the window size. Finally, the JLabel object is
added to the JPanel (see line 013), which is returned as the method's result.

Tip

You don't have to use a separate method such as createPane() to create
a JPanel and its components, but this technique helps organize the
program and is usually a good approach. The method is static in this case
so it can be called in reference to the main program's class.

As with all standalone Java programs, a main() method is a required ingredient. Here, the
first statements in main() select the program's look-and-feel. Almost all Swing
applications begin with code similar to this:

try {
 UIManager.setLookAndFeel(
 UIManager.getCrossPlatformLookAndFeelClassName());

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

382

} catch (Exception e) { }

There are other ways to set a Swing program's look-and-feel. In this case, the third line
specifies the cross-platform look-and-feel. This is otherwise known as the Java look-and-
feel. (See the next section for more information on other ways to specify a look-and-feel.)

The next step in creating a standalone Swing application is to create the window frame
object that contains the program's components. There are different approaches, all
perfectly valid, but the following steps are most commonly used:

JFrame frame = new JFrame("Simple Swing Application");
JPanel components = createPane(); // Create components pane
frame.getContentPane().add(components, BorderLayout.CENTER);

First, create the JFrame container, specifying the window's title. The next step creates a
JPanel component by calling the application class's static createPane() method. This
provides a container that holds the program's GUI components. Calling getContentPane()
returns the content pane for a JFrame object. As mentioned earlier, in Swing, you don't
add components to a frame; you add them to the frame's content pane. As shown here,
this is typically done by passing a JPanel containing the components to the content pane's
add() method. Additionally, I specified the CENTER constant provided by BorderLayout.
This centers the pane and its text component in the window.

Tip

Another good way to organize the content pane is to have the application's
class extend JFrame. The extended class constructor can then add GUI
objects to the frame's content pane, and in that way greatly reduce the
complexity of the main() method. See Listing 21-3, SwingMenuDemo.java,
later in this chapter for an example of this technique.

Next in the sample program is code that ends the program when the window closes (see
lines 030-034). This is the same code as explained in Chapter 20, "AWT Applets and
Applications." Notice that the window listener is added to the frame container. It is the
frame that displays the window title bar along with its usual array of sizing and close
buttons, so this is the proper object to listen for the window close event, and when
received, call System.exit() to end the program.

Finally, two statements complete the JFrame window and make it visible:

frame.pack();
frame.setVisible(true);

The first statement causes the layout manager for the frame to reduce all components and
the frame itself to minimum or optimal sizes, depending on the manager's layout rules.
(See "Containers and Layouts" later in this chapter.) Packing a frame this way before
displaying it generally results in the best-looking displays. (Temporarily delete the
statement to see what happens if you don't pack the frame.) Finally, call setVisible() as
shown to display the frame window. Alternatively, you can replace that statement with
the following line. They are functionally the same:

frame.show();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

383

Touch Me; Feel Me
It is somewhat of a myth that Swing's pluggable look-and-feel (plaf) capabilities allow
programs running under any operating system to duplicate the appearance of any other
system's GUI. That's possible to some extent, but in practice, real-world considerations
limit look-and-feel leeway. For instance, you can generally select between Java's own
look-and-feel (known also as the Metal look) and a native appearance. However, you
can't make a PC running Windows look like a Mac, nor can you do the reverse.

There are basically three choices in setting up a Swing application's look-and-feel. Your
choices are

* Choose the Java (Metal) look-and-feel. This produces similar appearances and
operation across all supported platforms, and although the results differ from the
native GUI, objects and windows tend to look good regardless of the operating
system in use.

* Choose the system's own look-and-feel. If you want your Java Swing programs to
closely resemble the native GUI, use this technique.

* Choose a specific look-and-feel and ignore the operating system GUI. This might
be called the shoehorn approach — you might get away with this trick, but you
may also experience troubles. Currently, the Motif look-and-feel is the only one
other than Java that works across all supported platforms.

Tip

For more information about pluggable look-and-feel issues, read Java's
online documentation for the javax.swing.plaf package.

I suggest using only the first or second techniques, but try the following suggestions if
you want to experiment with Java look-and-feel capabilities. Typically, the main()
method begins with the following try block:

try {
 UIManager.setLookAndFeel(
 UIManager.getCrossPlatformLookAndFeelClassName());
} catch (Exception e) { }

This goes against the general rule that catching all exceptions is unsafe; however, in this
case, if a specified look-and-feel can't be selected for some reason, Swing defaults to the
Java (Metal) look-and-feel. This technique, then, at least allows the program to continue.

Note

If you don't specify one, Swing defaults to the Java (Metal) look-and-feel.
For that reason, to save space in this chapter, future examples do not
include the preceding code.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

384

The UIManager class provides methods for selecting a look-and-feel. Call
getCrossPlatformLookAndFeelClassName() for the Java or Metal appearance. Use this
technique if you don't care about look-and-feel issues — it generally produces good-
looking results on all platforms.

Change that method to getSystemLookAndFeelClassName() to select the native
operating system's GUI appearance. With this approach, users see GUI objects that
closely resemble those used by native programs. Those objects are still lightweight,
however, and they do not have peer native objects. For this reason, there may still be
some minor display differences between Swing and the native GUI.

Note

I have to wonder whether plaf's designers are attempting to win a gold
medal for the longest method names. Just an idle thought.

You may also specify the exact look-and-feel that you want to use — the shoehorn
approach — but be careful when using this method. To select a specific look-and-feel,
pass a string to UIManager.setLookAndFeel(). For example, to select the Motif look-and-
feel, the only available alternative to Java (Metal) supported on all platforms, use the
statement

try {
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
} catch (Exception e) { }

Other strings select among the other possibilities. Use the following string to specify the
Java Metal, known also as the cross-platform look-and-feel:

"javax.swing.plaf.metal.MetalLookAndFeel"

Since that's the default look-and-feel, you'll probably never use that string. Use the
following string to force the Windows look-and-feel, but be aware that this works only
with Microsoft Windows:
"com.sun.java.swing.plaf.windows.WindowsLookAndFeel"

Use the following string to force the Macintosh look-and-feel, but be aware that this
works only with a Macintosh operating system:

"javax.swing.plaf.mac.MacLookAndFeel"

Be aware that users can override an application's look-and-feel by using the following
command to run the program:

java –Dswing.defaultlaf=<string> <program>

Replace <string> with one of the aforementioned strings, minus the quote marks, and
<program> with the application's class filename. You will be forgiven if you
"accidentally" forget to include this tip in your program's documentation.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

385

Programming with Swing
The javax.swing package has enough classes to fill an entire book, probably an entire
shelf of books. In two chapters, I cannot do this extensive toolkit justice, but the
following sections will help you get up to speed quickly with Swing components. Using
the information in next several sections, and the component sample programs in Chapter
22, you should be able to figure out how to use most Swing components by reading about
them in Java's online documentation.

Containers and Layouts
All Swing applets and applications are based on one of three types of containers: JApplet,
JDialog, or JFrame. Applets that run in Web browsers are, of course, based on the
JApplet class. Dialogs, based on JDialog, also called option windows, are interactive
windows that, among other tasks, prompt for filenames, display error messages, and
select program options. Standalone applications are most often built on one or more
JFrame objects, but they might also be constructed as a JDialog.

All of these classes are called top-level containers. They serve largely as a place to insert
other organizational panes. For example, a window's content pane, usually an object of
the JPanel class, typically contains a Swing program's GUI objects. As mentioned, in
Swing programming, you never add GUI objects to a top-level container such as a
JFrame. Instead, you add them to a JPanel or other non-top-level container, and then add
that object to the frame.

Creating Pull-Down Menus
Creating pull-down menus requires understanding a little more about how top-level
containers are organized into panes. A JFrame container, for example, has two panes
called the root and content panes. In general, the root pane is the behind-the-scene
manager for the frame, and one of its jobs is to hold the window's pull-down menu, if any.
The content pane holds other GUI objects such as buttons and text. For this chapter, you
can ignore other panes, but if you consult a Swing reference, you'll come across the terms
glass panes and layered panes as well as those described here.

The best way to create a pull-down menu is to call the setJMenuBar() method for a
JFrame or JApplet container. (Dialogs don't usually have menus.) Pass to the method a
menu constructed of the JMenuBar class. For example, if myMenu is the menu object,
this adds it to a frame's root pane:

frame.setJMenuBar(myMenu);

Contrast that statement with the way you add components to a frame or other top-level
container. For example, to add a button to a window, use code such as

frame.getContentPane().add(myButton, BorderLayout.CENTER);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

386

The important rule to remember is that menus go with a top-level container's root pane.
Other GUI objects go with the content pane. Typically, three objects are needed to create
a pull-down menu:

JMenuBar menuBar; // Menu bar container
JMenu menu; // Pulldown menus (File, Edit, ...)
JMenuItem menuItem; // Menu commands (Open, About, ...)

Use these objects as follows. First, create the menu bar as a JMenuBar object, and then
insert it into the frame (you can do the same for an applet):

menuBar = new JMenuBar();
frame.setJMenuBar(menuBar);

That just creates an empty bar, ready to hold menus. Create each menu, File, Edit, Help,
and any others, as objects of class JMenu. For example, this creates the typical File menu
and adds it to the menu bar:

menu = new JMenu("File");
menuBar.add(menu);

The final step is to create the menu items — the commands. Do this by constructing
JMenuItem objects and adding them to the menu in the order you want them to appear
from top to bottom. You can also specify a mnemonic letter that, when pressed with a
control key, selects the command using the keyboard. (The exact control key used
depends on the operating system and look-and-feel):

menuItem = new JMenuItem("Open");
menuItem.setMnemonic('o');
menuItem.addActionListener(this);
menu.add(menuItem);

Note

You may pass an upper- or lowercase letter to setMnemonic(), as shown
on the second line of the preceding sample code. The first corresponding
letter in the associated menu or item, ignoring case, is underlined on
screen. For example, in this case, passing either 'o' or 'O' to setMnemonic()
underlines the first letter in Open, indicating to the user that pressing the
Alt (or a similarly named special key) and the letter key selects the
command. You may call setMnemonic() for menus (File, Edit, and so on),
and for menu items (commands). For menu items, after the menu is
opened, users may press the designated key to select the command —
they don't have to also press Alt.

The third statement passes this to addActionListener(), making the current container —
for example, the frame or applet — the listener for the menu item's action event, fired
when users select the command. This is one way to associate an action with a menu item,
but it's not the only way. A slightly different approach is used in Listing 21-3,
SwingMenuDemo.java. The program also shows another way to organize a standalone
Swing application that results in a greatly simplified main() method.

Listing 21-3

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

387

SwingMenuDemo.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class SwingMenuDemo extends JFrame {
006:
007: // Constructor does all the setup work
008: public SwingMenuDemo() {
009: JMenuBar menuBar; // Menu bar (contains all menus)
010: JMenu menu; // Pulldown menus
011: JMenuItem menuItem; // Items inside pulldown menus
012:
013: // End program when window closes
014: addWindowListener(new WindowAdapter() {
015: public void windowClosing(WindowEvent e) {
016: System.exit(0);
017: }
018: });
019:
020: // Create the menu bar, menu, and menu item
021: menuBar = new JMenuBar();
022: setJMenuBar(menuBar);
023: menu = new JMenu("Demo");
024: menuBar.add(menu);
025: menuItem = new JMenuItem("Exit");
026: menu.add(menuItem);
027:
028: // Attach listener for the menu item
029: menuItem.addActionListener(new ActionListener() {
030: public void actionPerformed(ActionEvent e) {
031: System.exit(0);
032: }
033: });
034: }
035:
036: // Because SwingMenuDemo is a JFrame, main() is much simpler!
037: public static void main(String[] args) {
038: SwingMenuDemo app = new SwingMenuDemo();
039: app.setTitle("Swing Menu Demo");
040: app.setSize(400, 300);
041: app.show();
042: }
043: }

Take a look first at the end of the program. Method main() at lines 037-042 is simpler
than in earlier listings in this chapter. This is possible because the program's class,
SwingMenuDemo (see line 005) extends JFrame. In this way, the application itself
provides the root and content layers needed to hold a menu bar and other GUI objects.
Also, since the application is its own frame, its constructor performs all the necessary
setup chores that, in earlier examples, were programmed in main().

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

388

Lines 014-018 in the constructor now add the window listener method for the window
close event so that the frame exits the application on its own when the window closes.
Likewise, the menu bar adds an actionPerformed() method using an anonymous class
directly to the menu item instead of to the container. This way, the menu item itself
responds to its selection. These techniques are more object-oriented than those shown in
earlier examples.

Swing Layouts
Because Java programs run on a variety of platforms, determining how and where to
position GUI objects can be a tricky task to perform. Although it is possible to position
components at absolute locations (relative to their containers, that is), this is almost never
a good idea. Instead, Swing and AWT use layout managers to arrange components
according to generalized schemes. Most layout manager classes are in the java.awt
package and are used similarly in AWT and Swing. However, Swing adds some new
managers that are used only in Swing programming. Table 21-1 shows the AWT and
Swing layout manager classes.

Table 21-1
AWT and Swing Layout Manager Classes

Class Name Package Purpose

BorderLayout java.awt Arranges components in a container using
the compass headings north, south, east, and
west, and also center.

BoxLayout javax.swing Lays out components vertically or
horizontally, similar to how GridBagLayout
works, but using a more flexible design that
respects component constraints such as a
requested minimum size.

CardLayout java.awt Lays out components, which are typically
other containers with GUI objects, as
individual panels. Cards are similar to
tabbed panes or tabbed windows in some
other GUI toolkits.

FlowLayout java.awt Lays out components in a left-to-right flow,
useful for creating toolbars or simple
windows.

GridBagLayout java.awt Lays out components in an X, Y grid of
variable-size cells, as though on a
checkerboard. This layout manager is tricky
to use — try BoxLayout for better results.

GridLayout java.awt Similar to GridBagLayout, but the grid cells

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

389

are all the same size.

LayoutManager java.awt This is the basic interface that containers
implement for working with layout
managers. You won't use this in application
programming.

LayoutManager2 java.awt Extends the LayoutManager interface to add
the concept of constraints that components
can request, such as how they would "like"
to be aligned with other components. You
won't use this unless you are developing
your own components and layout managers.

OverlayLayout javax.swing Lays out components so that they may be
placed on top of one another. Useful in
creating layered panels.

ScrollPaneLayout javax.swing This is the layout manager used by a
JscrollPane object to organize its standard
components: a viewport, two scrollbars, row
and column headers, and four corner
objects. Applications don't use this one
directly.

ViewportLayout javax.swing This is the default layout manager used by
the JViewport container. A viewport is used
to display information in windows that may
change in size, most often in conjunction
with a JScrollPane.

Note

BorderLayout is the default layout manager for frames (JFrame objects),
for dialogs (JDialog objects), and for applets (JApplet objects).

To select a layout manager, you will usually create a JPanel container to hold GUI
objects, and then call the setLayout() method. For example, to use the GridLayout
manager, use code such as this:

JPanel pane = new JPanel();
pane.setLayout(new GridLayout());

You would then usually add the pane to the frame's or applet's content pane, as
demonstrated in most of this chapter's listings. Following are five relatively simple
applets that demonstrate how to use some of the layout managers in Table 21-1. Run
them by opening their HTML files located in the same directories as the listings, or by
using the appletviewer utility.

Listing 21-4, FlowDemo.java, demonstrates the FlowLayout manager, one of the simplest
available. Use this class to lay out components in a container from left to right, wrapping

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

390

to the next row if necessary. The demonstration program shows how five buttons are
organized when added to the applet content pane. Figure 21-4 shows the applet in my
Web browser.

insert fg2104.jpg

Figure 21-4
The FlowDemo applet uses the FlowLayout manager to arrange five buttons.

Listing 21-4
FlowDemo.java
001: import javax.swing.*;
002: import java.applet.*;
003: import java.awt.*;
004:
005: public class FlowDemo extends JApplet {
006: int alignment; // Current FlowLayout alignment
007:
008: public void init() {
009: JPanel pane = new JPanel();
010: alignment = FlowLayout.LEFT;
011: // alignment = FlowLayout.CENTER;
012: // alignment = FlowLayout.RIGHT;
013: pane.setLayout(new FlowLayout(alignment));
014: pane.add(new JButton("Button1"));
015: pane.add(new JButton("Button2"));
016: pane.add(new JButton("Button3"));
017: pane.add(new JButton("Button4"));
018: pane.add(new JButton("Button5"));
019: getContentPane().add(pane, BorderLayout.CENTER);
020: }
021: }

The main class, FlowDemo, extends JApplet, as do all Swing applets. In method init(),
the JPanel content pane is created, after which an alignment int variable is set to the
LEFT constant in the FlowLayout class. Try changing this to CENTER or RIGHT to see
the difference in how the components are arranged. Line 013 tells the content pane to use
a FlowLayout manager, after which five JButton objects are added to the pane.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

391

The final statement inserts the JPanel container into the applet's content pane. Notice that
this uses the BorderLayout's CENTER constant to position the pane. This affects only
how the content pane is arranged in the applet's container, not how individual
components are placed in the pane.

Another listing shows how, by using the BorderLayout manager, you can achieve an
entirely different effect. Listing 21-5, BorderDemo.java, displays five buttons as shown
in Figure 21-5.

insert fg2105.jpg

Figure 21-5
The BorderLayout manager uses compass headings to arrange components.

Listing 21-5
BorderDemo.java
001: import javax.swing.*;
002: import java.applet.*;
003: import java.awt.*;
004:
005: public class BorderDemo extends JApplet
006: {
007: public void init() {
008: JPanel pane = new JPanel();
009: pane.setLayout(new BorderLayout());
010: pane.add("North", new JButton("North"));
011: pane.add("South", new JButton("South"));
012: pane.add("East", new JButton("East"));
013: pane.add("West", new JButton("West"));
014: pane.add("Center", new JButton("Center"));
015: getContentPane().add(pane, BorderLayout.CENTER);
016: }
017: }

Compare the BorderDemo class with FlowDemo in the preceding listing. The programs
are nearly identical, but the new program passes string positioning commands such as
@@dpNorth@@dp and @@dpCenter@@dp to the content pane's add() method. Each
JButton is sized to fit neatly within the applet's window.

Tip

BorderLayout is particularly useful for arranging multiple JPanel panes, or
other containers, each holding a group of GUI objects.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

392

The BorderLayout and FlowLayout classes are useful for creating simple windows and
arranging multiple panes that contain other GUI objects. However, you'll often need
better control over object placement. For that, AWT and Swing provide three more
sophisticated layout manager classes. The first, in the java.awt package, is GridLayout.
Use this class to arrange components in a fixed-size X, Y grid, like a checkerboard.
Listing 21-6, GridDemo.java, demonstrates how to use GridLayout. As Figure 21-6
shows, the result looks like a telephone touch pad.

insert fg2106.jpg

Figure 21-6
GridDemo displays a telephone touch pad using a GridLayout manager.

Listing 21-6
GridDemo.java
001: import javax.swing.*;
002: import java.applet.*;
003: import java.awt.*;
004:
005: public class GridDemo extends JApplet {
006:
007: public void init() {
008: JPanel pane = new JPanel();
009: pane.setLayout(new GridLayout(4, 3, 8, 16));
010: pane.add(new JButton(" 1"));
011: pane.add(new JButton("ABC 2"));
012: pane.add(new JButton("DEF 3"));
013: pane.add(new JButton("GHI 4"));
014: pane.add(new JButton("JKL 5"));
015: pane.add(new JButton("MNO 6"));
016: pane.add(new JButton("PRS 7"));
017: pane.add(new JButton("TUV 8"));
018: pane.add(new JButton("WXY 9"));
019: pane.add(new JButton(" * "));
020: pane.add(new JButton("Opr 0"));
021: pane.add(new JButton(" # "));
022: getContentPane().add(pane, BorderLayout.CENTER);
023: }
024: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

393

Line 009 constructs a GridLayout object, using four integer arguments representing the
number of rows (4), the number of columns (3), the horizontal gap between components
(8), and the vertical gap (16). Objects such as the JButtons used here are placed inside
each of the grid's cells in left-to-right, top-to-bottom order. In theory, the objects are sized
the same, but some strange results can occur if you mix different types of GUI
components.

To similarly arrange variable-sized objects, java.awt provides the even more
sophisticated GridBagLayout manager. The class is similar to GridLayout but allows
component cells to vary in size. Listing 21-7, GridBagDemo.java, demonstrates how to
use this layout manager. Figure 21-7 shows the results of running the program in
appletviewer.

insert fg2107.jpg

Figure 21-7
The GridBagLayout class lays out components in a grid of variable-size cells.

Listing 21-7
GridBagLayout.java
001: import javax.swing.*;
002: import java.applet.*;
003: import java.awt.*;
004:
005: public class GridBagDemo extends JApplet {
006:
007: protected void makeButton(String name, GridBagLayout gridbag,
008: GridBagConstraints c, JPanel pane)
009: {
010: JButton button = new JButton(name);
011: gridbag.setConstraints(button, c);
012: pane.add(button);
013: }
014:
015: // Initialize applet and GUI buttons
016: public void init() {
017: JPanel pane = new JPanel(); // Create content pane
018: // Create GridBagLayout and Constraints objects
019: GridBagLayout gridbag = new GridBagLayout();
020: GridBagConstraints c = new GridBagConstraints();
021: pane.setLayout(gridbag); // Tell pane to use gridbag layout

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

394

022:
023: // Create four "normal" buttons on the top row
024: c.fill = GridBagConstraints.NONE;
025: c.weightx = 1.0;
026: makeButton("Button 1", gridbag, c, pane);
027: makeButton("Button 2", gridbag, c, pane);
028: makeButton("Button 3", gridbag, c, pane);
029: c.gridwidth = GridBagConstraints.REMAINDER;
030: makeButton("Button 4", gridbag, c, pane);
031:
032: // Create a long button filling entire row
033: c.fill = GridBagConstraints.BOTH;
034: c.weightx = 0.0;
035: makeButton("Button 5", gridbag, c, pane);
036:
037: // Create two buttons that fill the row
038: c.gridwidth = GridBagConstraints.RELATIVE;
039: makeButton("Button 6", gridbag, c, pane);
040: c.gridwidth = GridBagConstraints.REMAINDER;
041: makeButton("Button 7", gridbag, c, pane);
042:
043: // Create a vertical button
044: c.gridwidth = 1;
045: c.gridheight = 2;
046: c.weighty = 1.0;
047: makeButton("Button 8", gridbag, c, pane);
048: c.weighty = 0.0;
049:
050: // Create buttons to right of vertical Button 8
051: c.gridwidth = GridBagConstraints.REMAINDER;
052: c.gridheight = 1;
053: makeButton("Button 9", gridbag, c, pane);
054: makeButton("Button 10", gridbag, c, pane);
055:
056: // Add content pane to applet top–level container
057: getContentPane().add(pane, BorderLayout.CENTER);
058: setSize(325, 250);
059: }
060: }

GridBagLayout is used a little differently from other layout managers. In general, the
following preparations are usually needed:

JPanel pane = new JPanel();
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();
pane.setLayout(gridbag);

First, construct the content pane to be added to the top-level container. Next, create a
GridBagLayout object — this is the actual layout manager. After that, also create a
GridBagConstraints object. This is used to alter GUI object placement according to

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

395

various spacing rules, or constraints. Finally, pass the GridBagLayout object to the
content pane's setLayout() method.

Following those steps, as shown in the sample listing, you can add GUI components to a
container. To select various constraints, assign values as shown to the
GridBagConstraints object. For example, to state that an object take up whatever space
remains in its row, use the statement:

c.gridwidth = GridBagConstraints.REMAINDER;

Call the setConstraints() method for the GridBagLayout object, specifying also the GUI
object involved. To add a JButton to the grid, follow the preceding statement with

JButton button = new JButton("Label");
gridbag.setConstraints(button, c);
pane.add(button);

You can add other objects using similar code, but be forewarned that GridBagLayout is
tricky to use, and much trial and error may be needed to achieve pleasing results. Instead
of this class, you might want to use the new Swing layout manager, BoxLayout. The class
provides similar operations as GridBagLayout, but is far easier to use. Also, a supporting
class, simply named Box, provides supporting methods that can add "glue" and "struts"
for spacing components inside containers.

Note

The BoxLayout and Box classes are members of the javax.swing package,
unlike most other layout classes, which are members of java.awt. The two
layout managers are available only to Swing applets and applications, not
to programs using the AWT.

Some very sophisticated GUI arrangements are possible with the BoxLayout manager,
but getting started with this class may be confusing at first. You'll find more examples of
BoxLayout and its associated Box class in future listings. Listing 21-8, BoxDemo.java,
merely introduces the class and shows a couple of important aspects about its proper use.
Figure 21-8 shows the final applet in action.

insert fg2108.jpg

Figure 21-8
The BoxLayout manager arranges these applet buttons centered in the window.

Listing 21-8
BoxDemo.java
001: import javax.swing.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

396

002: import java.applet.*;
003: import java.awt.*;
004:
005: public class BoxDemo extends JApplet
006: {
007: // Add new button to pane, with center alignment
008: protected void addButton(String label, JPanel pane) {
009: JButton button = new JButton(label);
010: button.setAlignmentX(Component.CENTER_ALIGNMENT);
011: pane.add(button);
012: }
013:
014: public void init() {
015: JPanel pane = new JPanel();
016: pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
017: addButton("Small", pane);
018: addButton("tiny", pane);
019: addButton("Really Big Button", pane);
020: addButton("Bottom Button", pane);
021: getContentPane().add(pane, BorderLayout.CENTER);
022: }
023: }

Create the content pane and call setLayout() in the usual way (see lines 015-016), and
also specify whether to arrange components horizontally (BoxLayout.X_AXIS) or
vertically (BoxLayout.Y_AXIS):

JPanel pane = new JPanel();
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));

Because all GUI objects are arranged either in a row or column, you might think that
BoxLayout is similar to FlowLayout. But this manager is far more sophisticated because
it respects a component's requested alignment and sizing rules. To specify that the layout
manager center a button, call setAlignmentX() for the button object as follows:

button.setAlignmentX(Component.CENTER_ALIGNMENT);

When the BoxLayout manager arranges components, it tries to respect all such requests
that components make regarding positioning and size. You can similarly call
setMaximumSize() and setMinimumSize() to request that objects are sized within a
certain range. These methods are inherited from JComponent by all GUI component
classes. One reason BoxLayout is so useful is because it tries to respect a component's
constraints in arranging them in a container. Other AWT layout managers do not perform
nearly as well.

Tip

Using multiple JPanel containers along with the BoxLayout manager is a
good way to arrange GUI objects in groups. You might also use
BoxLayout to add the panels to the top-level container's content pane.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

397

Summary
* Sun recommends that all new applets and GUI applications now use Swing

components. Programmers who are familiar with AWT may be reluctant to switch,
but there are many excellent reasons for using Swing as suggested in this chapter.

* Swing components are lightweight — they have no peer objects in the native
operating system. This makes Swing components more efficient, and also easier
to extend.

* Swing can be used to write applets and standalone applications. However,
<applet> tags in HTML files require conversion before they can load a Swing
applet class file. Also, the browser must have the Java 2 plug-in. Sun offers the
plug-in, and an HTML converter, free of charge for downloading over the Internet.

* Swing components are added to a top-level container's content pane, often using
an object of the JPanel class. Unlike in the AWT, Swing components are never
directly added to application frames or applets.

* Swing provides several different look-and-feel capabilities, but it's a myth that
you can use this feature to duplicate any appearance on any system. The Java (or
Metal) look-and-feel is used by default. That and the Motif look-and-feel work on
all supported platforms. You may also specify that the native look-and-feel be
used, but it may differ in minor ways compared to native GUI objects. There are
also Windows and Macintosh look-and-feel settings; however, these work only on
their native systems.

* One important aspect of Swing programming is the use of layout managers to
arrange components in windows. AWT provides several managers that are used
similarly in AWT and in Swing. However, Swing adds a few of its own layout
managers that are more capable than those in the AWT. For example, the
BoxLayout class is easier to use and much more flexible than AWT's tricky
GridBagLayout manager.

Chapter 22 Swing Components

Swing offers a nearly overwhelming array of classes for GUI programming. To help you
learn about the classes you need, this chapter covers many of the Swing classes that are
used most often. These include different types of buttons, dialogs, text objects, and lists.
Also in this chapter are notes about special Swing features such as using HTML in text
items and inserting graphical icons into buttons and other object. Also in this chapter are
examples that show how to create pop-up menus and toolbars, and how to program event
listeners to respond to user commands.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

398

In This Chapter

* Creating buttons and groups

* Programming dialog boxes

* Inserting text objects

* Displaying lists and combo-boxes

* Swing pop-up menus

* Action objects and toolbars

Buttons and Groups
One of the simplest Swing classes is the lowly, but ever-present, JButton. As you learned
in Chapter 21, "Swing Applets and Applications," a button usually has an ActionListener
event handler that performs the button's actions when selected. However, this category
contains other types of buttons, including check boxes and radio buttons. Swing also
provides a way to group multiple buttons so that they operate in concert. And, as the next
section explains, even the simple JButton has some interesting capabilities that may not
be obvious, such as its ability to display a graphical icon in addition to its usual text label.

JButton
Typically, you create a JButton object with a statement such as

JButton myButton = new JButton("Click Me!");

In addition to text, however, you can also display a graphic icon image, sometimes called
a glyph, along with the button's text label. This was difficult, if impossible, to do using
the AWT because of its reliance on native GUI objects. Because Swing objects are
lightweight, and do not use any native code, it's easy to extend them. Listing 22-1
demonstrates this capability by adding image icons to two JButton objects. Figure 22-1
shows the program's window.

insert fg2201.jpg

Figure 22-1
Two Swing buttons with image icons and text labels

Listing 22-1
ButtonIcon.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

399

001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class ButtonIcon extends JFrame {
006:
007: // Constructor does all the setup work
008: public ButtonIcon() {
009:
010: // Select local system look and feel
011: try {
012: UIManager.setLookAndFeel(
013: UIManager.getSystemLookAndFeelClassName());
014: } catch (Exception e) { }
015:
016: // End program when window closes
017: addWindowListener(new WindowAdapter() {
018: public void windowClosing(WindowEvent e) {
019: System.exit(0);
020: }
021: });
022:
023: ImageIcon prevIcon = new ImageIcon("lefthand.gif");
024: JButton prevButton = new JButton("Prev", prevIcon);
025: prevButton.setToolTipText("Move to the previous page");
026: ImageIcon nextIcon = new ImageIcon("righthand.gif");
027: JButton nextButton = new JButton("Next", nextIcon);
028: nextButton.setToolTipText("Move to the next page");
029:
030: Container content = getContentPane();
031: content.setLayout(new FlowLayout());
032: content.add(prevButton);
033: content.add(nextButton);
034: }
035:
036: public static void main(String[] args) {
037: ButtonIcon app = new ButtonIcon();
038: app.setTitle("Button Icon Demo");
039: app.setSize(320, 120);
040: app.show();
041: }
042: }

Most images, whether large or small, are represented in Swing as ImageIcon objects.
That class and its Icon interface are members of the javax.swing package. Lines 023-028
show how to load GIF images (Compuserve's Graphics Interchange Format) and then use
them to create JButton objects. You may also use JPEG image files with ImageIcon.
Because these two formats are generally supported throughout the Web, they are two you
will probably use in Java programs, especially in applets. However, ImageIcon also
supports the relatively new PNG (Portable Network Graphics) format. To the ImageIcon
constructor, you may specify either an image filename or its URL.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

400

Tip

Because the JPEG format uses a "lossy" compression technique, it is
more suitable for large pictures, especially when you need to reduce their
file sizes for fast loading without too much degradation in quality. Use the
GIF format for small images such as button and label icons, typically 16-
by-16 pixels, or in multiples of 8 pixels, in size. These aren't hard and fast
rules, but they generally produce the best results in Web browsers. The
PNG format is relatively new and might not be supported in older browsers.

As Listing 22-1 shows, you can also add tooltip text to a button (or to any GUI Swing
JComponent subclass). This is also sometimes called fly-over text. For example, the
following statement adds a tooltip to the prevButton object:

prevButton.setToolTipText("Move to the previous page");

To see the text, run the program and move the mouse cursor over one of the two buttons.
After about a second, the tooltip text is displayed. Tooltips may have been special
features in the recent past, but they are universally expected in today's GUIs. Use them
lavishly.

Not shown in the program is how to specify a frame's default button. Do that by calling
the setDefaultButton() method for the frame's root pane:

getRootPane().setDefaultButton(nextButton);

Although keyboard mnemonics are not shown in the listing, you can easily set them for a
button. For example, create a button using code such as

JButton anyButton = new JButton("Click me!");
anyButton.setMnemonic('c');

You may specify the mnemonic letter in upper- or lowercase, similar to the way you can
set a menu item's mnemonic, as explained in Chapter 21. Pressing the current look-and-
feel setting's mnemonic key (Alt for example on PC keyboards) plus the specified letter
selects the button as though the user clicked it. You can use mnemonics similarly with
most other selectable Swing components.

JToggleButton
Another kind of simple button is called a JToggleButton. As its name suggests, this
button is used for operations that need to be toggled on and off. It is also called a two-
state button. Click it once to toggle it on; click again to toggle it off. Create a
JToggleButton the same way you do a JButton using statements such as

ImageIcon icon = new ImageIcon("image.gif");
JToggleButton button = new JToggleButton("Off", icon);

Although that works, the button uses the same image for its two states. To change the
button icon and its text label to reflect the current state requires implementing a
ChangeListener object. Listing 22-2, ToggleDemo.java, shows the necessary
programming. As Figure 22-2 illustrates, the program displays a toggle button with a

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

401

dimmed light bulb icon. Click the button to turn the light on, and to change the button's
label from "Off" to "On."

insert fg2202.jpg

Figure 22-2
Use JToggleButton to create a two-state button.

Listing 22-2
ToggleDemo.java
001: import javax.swing.*;
002: import javax.swing.event.*;
003: import java.awt.*;
004: import java.awt.event.*;
005:
006: public class ToggleDemo extends JFrame {
007:
008: ImageIcon bulbOnIcon;
009: ImageIcon bulbOffIcon;
010: JToggleButton onOffButton;
011:
012: // Constructor does all the setup work
013: public ToggleDemo() {
014:
...
028: bulbOnIcon = new ImageIcon("bulbon.gif");
029: bulbOffIcon = new ImageIcon("bulboff.gif");
030: onOffButton = new JToggleButton("Off", bulbOffIcon);
031: onOffButton.addChangeListener(new ChangeListener() {
032: public void stateChanged(ChangeEvent e) {
033: if (onOffButton.isSelected()) {
034: onOffButton.setIcon(bulbOnIcon);
035: onOffButton.setText("On");
036: } else {
037: onOffButton.setIcon(bulbOffIcon);
038: onOffButton.setText("Off");
039: }
040: }
041: });
042:
043: Container content = getContentPane();
044: content.setLayout(new FlowLayout());
045: content.add(onOffButton);
046: }
...
054: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

402

Note

To save space in the listing, I removed statements at lines 015-027 and
047-053 that are mostly duplicated in Listing 22-1. Most other listings in
this chapter are similarly shortened. However, if you are viewing the
listings using this book's Just Click! indexes, you see the full text on
screen.

Unlike most other event listener interfaces supplied in the java.awt.event package,
ChangeListener is a member of javax.swing.event, imported at line 002. The program
declares three objects in the ToggleDemo class: two ImageIcon objects and one
JToggleButton. The class constructor initializes these objects at lines 028-030.

To change the button's icon and label to match the button's state, the program creates an
anonymous class starting at line 031 in a call to the ToggleButton's addChangeListener()
method. In this class, method stateChanged() is called when the button's state changes.
Call isSelected() to determine the button's current state after any change has been put into
effect. As shown, calling setIcon() and setText() changes the button's appearance to
match the button's current on or off state.

Tip

The setLabel() method is now deprecated in Java 2. Call the setText()
method instead. Both methods do the same job of changing a button's text
label.

JRadioButton and ButtonGroup
Another popular type of button is called a radio button because it resembles the buttons
on an automobile radio in which only one button can be selected at a time. Pressing
another button causes the previously selected one to pop out. In GUI programming, radio
buttons are useful for offering users an easy way to select one of several options. For
proper operation, radio buttons should always be assigned to a ButtonGroup object. This
ensures that selecting any button turns the others off, and that only one button may be
selected at a time.

To demonstrate button groups and radio buttons, Listing 22-3, ButtonDemo.java, displays
the window shown in Figure 22-3. The radio buttons are at left. Click one to change the
color of the small square below from red, to white, to blue. (The next section explains
how to create the program's check box buttons shown to the right.) The program is also a
good example of how to make GUI objects that affect one another's states. For example,
click the top check box to disable the radio buttons. Click the bottom check box to enable
the program's Exit button.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

403

insert fg2203.jpg

Figure 22-3
ButtonDemo demonstrates radio buttons and check boxes.

Listing 22-3
ButtonDemo.java (partial)
001: import javax.swing.*;
002: import javax.swing.border.*;
003: import javax.swing.event.*;
004: import java.awt.*;
005: import java.awt.event.*;
006:
007: // The main program class
008: public class ButtonDemo
009: extends JFrame implements ActionListener {
010:
011: // GUI objects displayed in the frame window
012: ButtonGroup group; // Groups radio buttons
013: JRadioButton redButton; // First radio button
014: JRadioButton whiteButton; // Second radio button
015: JRadioButton blueButton; // Third radio button
016: JPanel colorBox; // Displays selected color
...
020:
021: // Constructor initializes the GUI objects and panels
022: public ButtonDemo() {
023:
...
042: // Create radio button panel and an inner pane
043: // to help display the GUI objects neatly
044: JPanel radioPane = new JPanel();
045: JPanel innerRadioPane = new JPanel();
046: radioPane.setBorder(
047: BorderFactory.createBevelBorder(BevelBorder.RAISED));
048: innerRadioPane.setLayout(
049: new BoxLayout(innerRadioPane, BoxLayout.Y_AXIS));
050: innerRadioPane.setBorder(
051: BorderFactory.createEmptyBorder(10, 10, 10, 10));
052:
053: // Construct the radio group and its buttons
054: // All button events go to the program's ActionListener
055: group = new ButtonGroup();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

404

056: redButton = new JRadioButton("Red ");
057: whiteButton = new JRadioButton("White");
058: blueButton = new JRadioButton("Blue ");
059: whiteButton.setSelected(true); // Select one button
060: redButton.addActionListener(this); // See ActionPerformed()
061: whiteButton.addActionListener(this);
062: blueButton.addActionListener(this);
063: group.add(redButton); // The group ensures that when one
064: group.add(whiteButton); // button is selected, the previously
065: group.add(blueButton); // selected button is turned off
066:
067: // Construct a small panel for displaying the selected color
068: colorBox = new JPanel();
069: colorBox.setBackground(Color.white);
070: colorBox.setPreferredSize(new Dimension(50, 50));
071:
072: // Add the GUI objects to the inner radio pane
073: innerRadioPane.add(redButton);
074: innerRadioPane.add(whiteButton);
075: innerRadioPane.add(blueButton);
076: innerRadioPane.add(
077: Box.createRigidArea(new Dimension(0, 25))); // Spacer
078: innerRadioPane.add(colorBox);
079:
080: // Add the inner pane to the raised radio panel (left side)
081: radioPane.add(innerRadioPane);
...
141: // Add the panels and GUI objects to the frame's content pane
142: Container content = getContentPane();
143: content.setLayout(new GridLayout(1, 3, 2, 2));
144: content.add(radioPane);
...
146: }
147:
148: // Change the colorBox background color when user
149: // selects a radio button.
150: public void actionPerformed(ActionEvent e) {
151: Color c;
152: if (redButton.isSelected()) c = Color.red;
153: else if (whiteButton.isSelected()) c = Color.white;
154: else c = Color.blue;
155: colorBox.setBackground(c);
156: }
...
166: }

The listing shows only the statements related to the radio buttons, their group object, the
sample color box, and their event handlers. Always create a ButtonGroup object to hold
related radio buttons, using code such as

ButtonGroup group;
JRadioButton redButton;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

405

group = new ButtonGroup();

Add each radio button to the group:

redButton = new JRadioButton("Red");
group.add(redButton);

You don't have to do anything further with the group, but be sure that the group object is
not local to a method, and thus subject to garbage collection. It is probably best to make
the group object a private member of the program's JFrame or other container class.

To respond to a radio button's selection, the sample program uses an actionPerformed()
method in the main class, which implements the ActionListener interface (see line 009).
In that method (see lines 150-156), isSelected() determines which button is currently
chosen, and the color box's background color is set to the appropriate color. Most of the
time, a group of radio buttons share the same action event handler using similar code,
although it is possible to program a ChangeListener for each individual button.

The program also demonstrates a good use of JPanel objects to create a pleasing, well-
organized display. Each half of the program's window is created using two JPanels, an
outer and an inner one:

JPanel radioPane = new JPanel();
JPanel innerRadioPane = new JPanel();

The outer panel, radioPane here, gets a beveled look using the BorderFactory class (see
lines 046-047). After that, the inner panel gets a BoxLayout manager and is also designed
with an invisible border to provide a little space around the panel's components. Lines
143-144 show how the frame's content pane is given a GridLayout manager (other
managers could also be used), after which simply adding the outer radioPanel inserts the
nested panes and their GUI objects into the program's window:
content.setLayout(new GridLayout(1, 3, 2, 2));
content.add(radioPane);

Using panels this way is much easier to manage than trying to insert multiple GUI
components directly into the content pane.

Tip

As a general rule, in a group of radio buttons, one button should be
selected initially, although this is not a requirement. Line 059 presets the
white radio button to match the color of the sample color box.

JCheckBox
Like a radio button, a check box is one of the more commonly used GUI button objects.
Check boxes are appropriate for presenting multiple choices, such as program options, in
which users might select one, two, several, or none of the choices offered. To create a
Swing check box, simply construct a JCheckBox object with the text you want to display.
Listing 22-3, continued from the preceding listing, shows the parts of the program related
to the creation of the check boxes shown in Figure 22-3.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

406

Listing 22-3
ButtonDemo.java (continued)
...
008: public class ButtonDemo
009: extends JFrame implements ActionListener {
010:
011: // GUI objects displayed in the frame window
...
017: JCheckBox showColorsButton; // First check box
018: JCheckBox exitOnCloseButton; // Second check box
019: JButton exitButton; // Plain button
020:
021: // Constructor initializes the GUI objects and panels
022: public ButtonDemo() {
...
087: // Create check box panel and an inner panel
088: // for a neat appearance
089: JPanel checkPane = new JPanel();
090: JPanel innerCheckPane = new JPanel();
091: checkPane.setBorder(
092: BorderFactory.createBevelBorder(BevelBorder.RAISED));
093: innerCheckPane.setLayout(
094: new BoxLayout(innerCheckPane, BoxLayout.Y_AXIS));
095: innerCheckPane.setBorder(
096: BorderFactory.createEmptyBorder(10, 10, 10, 10));
097:
098: // Create the "show colors" check box object and
099: // enable or disable the color radio buttons
100: showColorsButton = new JCheckBox("Show colors");
101: showColorsButton.setSelected(true);
102: showColorsButton.addChangeListener(new ChangeListener() {
103: public void stateChanged(ChangeEvent e) {
104: boolean t = showColorsButton.isSelected();
105: redButton.setEnabled(t); // Enable or disable all
106: whiteButton.setEnabled(t); // radio buttons depending on
107: blueButton.setEnabled(t); // state of check box
108: }
109: });
110:
111: // Create the "exit on close" check box object and
112: // enable or disable the Exit Program button
113: exitOnCloseButton = new JCheckBox("Exit on close");
114: exitOnCloseButton.addChangeListener(new ChangeListener() {
115: public void stateChanged(ChangeEvent e) {
116: boolean t = exitOnCloseButton.isSelected();
117: exitButton.setEnabled(t);
118: }
119: });
120:
121: // Create the plain "Exit Program" button
122: // and its action event listener

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

407

123: exitButton = new JButton("Exit Program");
124: exitButton.setEnabled(false); // Initially disabled
125: exitButton.addActionListener(new ActionListener() {
126: public void actionPerformed(ActionEvent e) {
127: System.exit(0);
128: }
129: });
130:
131: // Add the buttons to the inner pane
132: innerCheckPane.add(showColorsButton);
133: innerCheckPane.add(exitOnCloseButton);
134: innerCheckPane.add(
135: Box.createRigidArea(new Dimension(0, 50)));
136: innerCheckPane.add(exitButton);
137:
138: // Add the inner pane to the raised check box panel
139: checkPane.add(innerCheckPane);
...
166: }

As for the radio buttons, two JPanel panes neatly arrange the check boxes along with the
window's Exit button (see lines 089-096). Generally, unlike radio buttons, check boxes
need to respond individually to their selection. Do that by creating a ChangeListener
object, as shown at lines 102-109 and also 114-119. The first event handler shows how to
disable the radio buttons when the associated check box is not selected. Likewise, the
second event handler enables and disables the program's Exit button. These parts of the
program demonstrate useful techniques for creating GUI objects that affect one another's
states.

Tip

When using the BoxLayout manager, as with the JPanel object,
innerCheckPane, you may need to add some "dead space" between GUI
objects. To do that, lines 134-135 call the Box class's createRigidArea()
method using an object of the Dimension class to specify a space 0 units
wide by 50 high. The end effect depends on how the layout manager
works, but in general this is the correct way to add additional space
between components — for example, between the two check boxes and
the Exit button in the sample program's window.

Dialog Boxes
Dialog boxes are generally secondary windows that present lists of options or display
messages. For example, dialog boxes might be used to select configurations or to display
directories of filenames. Simple dialogs might display error messages and other notes,
although these kinds of dialogs offer only one-sided conversations. Typically, a dialog
box provides buttons to confirm changes or entries into component fields, to cancel any
changes, or to not perform an operation such as saving a file or exiting the program.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

408

Swing offers several standard dialog boxes, discussed in the next four sections, that find
wide use in GUI programming. These include simple message dialogs, interactive
confirmation dialogs, file dialogs, and the sophisticated JColorChooser, a good-looking
component that offers methods for selecting display colors.

Message Dialogs
Swing provides five types of message dialog boxes that are useful for informational,
warning, and error messages. These objects are ready-to-use; you simply supply the text
and select the type of dialog you want. The dialogs are modal, meaning the user must
close them before continuing to use the program.

Listing 22-4, MessageDemo.java, displays each type of Swing message dialog. Click one
of the program's buttons to select a type of dialog. Figure 22-4 shows the five types of
dialogs. The program's buttons are all created the same way. To save space in the listing,
I deleted all but the statements that create the Default button. The others are created using
nearly identical code.

insert fg2204.jpg

Figure 22-4
Swing's message dialogs

Listing 22-4
MessageDemo.java
001: import javax.swing.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

409

002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class MessageDemo
006: extends JFrame implements ActionListener {
007:
008: final int WARNING = JOptionPane.WARNING_MESSAGE;
009: final int ERROR = JOptionPane.ERROR_MESSAGE;
010: final int PLAIN = JOptionPane.PLAIN_MESSAGE;
011: final int INFO = JOptionPane.INFORMATION_MESSAGE;
012:
013: JButton defaultButton;
...
018:
019: public void showMessage(String s, int msgType) {
020: if (msgType < 0)
021: JOptionPane.showMessageDialog(this, s);
022: else
023: JOptionPane.showMessageDialog(this, s, "Message", msgType);
024: }
025:
026: // Constructor does all the setup work
027: public MessageDemo() {
...
042: defaultButton = new JButton("Default");
...
047: defaultButton.addActionListener(this);
...
053: Container content = getContentPane();
054: content.setLayout(new GridLayout(3, 2, 2, 2));
055: content.add(defaultButton);
...
060: }
061:
062: public void actionPerformed(ActionEvent e) {
063: Object source = e.getSource(); // Which button?
064: if (source.equals(defaultButton))
065: showMessage("Default message dialog", –1);
066: else if (source.equals(warningButton))
067: showMessage("Warning message dialog", WARNING);
068: else if (source.equals(errorButton))
069: showMessage("Error message dialog", ERROR);
070: else if (source.equals(plainButton))
071: showMessage("Plain message dialog", PLAIN);
072: else if (source.equals(infoButton))
073: showMessage("Information message dialog", INFO);
074: }
...
082: }

For simplicity, the program declares and calls a method, showMessage(), that displays
each type of message dialog (see lines 019-024). Class JOptionPane provides three

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

410

overloaded showMessageDialog() methods that you can use to create your own messages.
The simplest technique simply passes a parent component reference and a string to
display

JOptionPane.showMessageDialog(frame, s);

If you don't have the parent reference (I use a JFrame object here), you may set the first
argument to null. In that case, the method uses a default frame, but this might be
positioned anywhere on screen (probably dead center). Specifying a frame displays the
dialog over the relevant window, and this may help better direct the user's attention to the
message.

You can also select a message type and window title by supplying two more arguments, a
title and an integer value. For the integer, use one of the following constants defined in
JOptionPane to indicate the type of message you want:

ERROR_MESSAGE
INFORMATION_MESSAGE
WARNING_MESSAGE
PLAIN_MESSAGE

For example, to display a warning message dialog, use a statement such as

JOptionPane.showMessageDialog(frame, "System is low on memory!",
 "Warning message", JOptionPane.WARNING_MESSAGE);

The first argument is the parent container to which you want the dialog window aligned
(as mentioned, you can set this to null). Next is the message to display inside the window,
followed by the window title. Finally, specify one of the JOptionPane type constants.

A third form of the showMessageDialog() method accepts an Icon argument. Use this
form to display your own image inside the dialog, loaded as an ImageIcon object. For
example, you might display a welcome dialog using code such as

ImageIcon welcomeIcon = new ImageIcon("welcome.gif");
JOptionPane.showMessageDialog(null, "Welcome to my program!",
 "Hello", JOptionPane.INFORMATION_MESSAGE, welcomeIcon);

Confirmation Dialogs
Too many Yes-No-Cancel dialogs can detract from a program's smooth operation, but too
few might jeopardize its health. It takes a lot of careful planning to strike a good balance
between performing operations immediately on demand and requesting confirmation for
relatively dangerous tasks. The design work is your job, but at least Swing makes it easy
to create confirmation dialogs.

Note

Forgive me for tossing in a pet peeve here (if this were an e-mail message,
I'd say "Flame on"), but I just hate it when programs ask me for permission
to "Throw out changes to document?" I think that's backwards. I'd rather
be asked, "Save changes to document?" so that the positive response
reflects the more positive action. I'd much rather save changes

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

411

accidentally, and be forced to recover an original document from a backup,
than to throw out my changes accidentally and have no way of getting
them back. Whenever possible, try to program confirmation dialogs so that
a Yes answer selects the least harmful action. I wish more programs
would follow this advice. Flame off.

To request confirmation from users, call the JOptionPane class's showConfirmDialog()
method. There are two forms. One displays Yes and No buttons, and another adds a
Cancel button. Listing 22-5, YesNoDemo.java, shows how to use the method. Figure 22-
5 shows the program's display and confirmation dialog. Click the program's single button
(it occupies the entire window), and answer Yes to end the program, or No to continue
running.

insert fg2205.jpg

Figure 22-5
The YesNoDemo program displays a confirmation dialog with Yes and No
buttons.

Listing 22-5
YesNoDemo.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class YesNoDemo extends JFrame {
006:
007: // Constructor does all the setup work
008: public YesNoDemo() {
...
023: JButton optionButton = new JButton("Click Me!");
024: optionButton.addActionListener(new ActionListener() {
025: public void actionPerformed(ActionEvent e) {
026: int result =
027: JOptionPane.showConfirmDialog(null,
028: "Exit this program now?",
029: "Please answer",
030: JOptionPane.YES_NO_OPTION);
031: if (result == JOptionPane.YES_OPTION)
032: System.exit(0);
033: }
034: });
035:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

412

036: Container content = getContentPane();
037: content.add(optionButton);
038: }
039:
040: public static void main(String[] args) {
041: YesNoDemo app = new YesNoDemo();
042: app.setTitle("Confirm Dialog Demonstration");
043: app.setSize(320, 240);
044: app.show();
045: }
046: }

The confirmation dialog is created inside the program's lone button action event handler,
method actionPerformed(). Lines 026-030 call showConfirmDialog() and save the
dialog's result in an int variable. This equals either YES_OPTION or NO_OPTION
depending on which button the user clicked to close the dialog's window. Change the
constant in that line to YES_NO_CANCEL_OPTION to add a Cancel button, in which
case the method might also return CANCEL_OPTION. All of these constants are static
members of JOptionPane and, therefore, must be used in reference to the class name.

Tip

If the user closes a confirmation dialog by clicking the window's close
button or by selecting the system menu's Close command,
showConfirmDialog() returns JOptionPane.CLOSED_OPTION. This
equals –1, the same value as DEFAULT_OPTION. You may use either
constant. If you receive this value, depending on the dialog's purpose, you
should probably treat it the same as a No or Cancel button's selection.
However, this is another, and subtle, aspect of confirmation dialogs that
requires careful thought to ensure against the loss of information.

File Dialogs
One of the more capable standard Swing dialogs displays directory paths and filenames.
Use the JFileChooser class to display two types of these valuable dialogs: one to open
files, and one to save them. The dialogs don't perform any file operations. That's still your
job (for help with this topic, see Chapter 24, "Input and Output Techniques"). But using
these dialogs helps simplify the often tedious job of building directory trees and filtering
filenames for extensions such as .txt and .html. Remember too that these dialogs are
cross-platform tools — they work similarly on Solaris, Linux, Macintosh, and Windows
systems, despite major differences in file and path name conventions between these
systems.

Listing 22-6, FileDialog.java, demonstrates how to create standard file-open and file-save
dialogs. Run the program and click one of program's two buttons to display a
JFileChooser dialog. Feel free to "open" and "save" files — the program does not read or
write any real file data. However, you can create directories, and apparently, you can use
the dialogs to modify filenames, so exercise some caution when running the
demonstration. Figure 22-6 shows the program and its two dialogs.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

413

insert fg2206.jpg

Figure 22-6
Use JFileChooser to display file-open and file-save dialogs.

Listing 22-6
FileDialog.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class FileDialog extends JFrame {
006:
007: private JFileChooser fDialog;
008: JFrame frame; // Reference to this frame object
009:
010: // Constructor does all the setup work
011: public FileDialog() {
012:
013: frame = this; // So action listeners can find it
...
028: // Construct the file chooser dialog object
029: fDialog = new JFileChooser();
030:
031: // Open button displays File:Open dialog
032: JButton openButton = new JButton("Open File Dialog");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

414

033: openButton.addActionListener(new ActionListener() {
034: public void actionPerformed(ActionEvent e) {
035: String msg;
036: int result = fDialog.showOpenDialog(frame);
037: if (result == JFileChooser.APPROVE_OPTION) {
038: String fname = fDialog.getName(fDialog.getSelectedFile());
039: frame.setTitle(fname);
040: msg = "File Open Approved";
041: } else
042: msg = "File Open Cancelled";
043: JOptionPane.showMessageDialog(frame, msg);
044: }
045: });
046:
047: // Save button displays File:Save dialog
048: JButton saveButton = new JButton("Save File Dialog");
049: saveButton.addActionListener(new ActionListener() {
050: public void actionPerformed(ActionEvent e) {
051: String msg;
052: int result = fDialog.showSaveDialog(frame);
053: if (result == JFileChooser.APPROVE_OPTION) {
054: String fname = fDialog.getName(fDialog.getSelectedFile());
055: frame.setTitle(fname);
056: msg = "File Save Approved";
057: } else
058: msg = "File Save Cancelled";
059: JOptionPane.showMessageDialog(frame, msg);
060: }
061: });
...
068: }
...
076: }

It's probably best to construct a JFileChooser object as shown here at line 029 and keep
that object available throughout the program's life. However, to conserve resources, you
could create the dialog object each time it is needed. In the sample program, clicking one
of the two buttons calls one of two action event handlers at lines 033-045 and also 049-
061. These two sections show how to display and use file-open and file-save dialogs.

For the first type, call showOpenDialog() (line 036) and pass a reference to the current
frame or other top-level container. Or, you can pass null to center the dialog on screen. If
the method returns JFileChooser.APPROVE_OPTION, the user requested that a selected
file be opened. Get its name as shown at line 038, or if you prefer, you may do the same
operation in two steps:

File selectedFile = fDialog.getSelectedFile();
String fname = fDialog.getName(selectedFile);

You might use separate statements that way to inspect other aspects about the selected
file using the File object returned by getSelectedFile(). For example, call

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

415

getAbsolutePath() to get the file's full pathname. Look up the File class in the java.io
package in Java's online documentation for a full list of this class's methods and fields.

A file-save dialog is equally easy to create. In fact, the code is nearly identical, but it calls
showSaveDialog() (see line 052). JFileChooser, however, does not automatically ask
whether to overwrite an existing file. You need to provide code to do that after calling
showSaveDialog(), for example, by using a Yes-No confirmation dialog.

Tip

Using the technique shown in the sample program, the file
dialog ”remembers" its previous settings. Reopening the dialog displays
the most recently visited directory, and the current filename is
automatically filled in. If you want a fresh start each time, simply recreate
the JFileChooser object for each file-open and file-save operation.

Many times, you will need to filter these dialogs so they display specific file types based
on their filename extensions. This requires a little extra work, and unfortunately it is not a
native capability of the JFileChooser class. For an example of the necessary
programming, locate the ExampleFileFilter class from the JDK demonstration programs.
On my system, the source files are in the following directory:

jdk1.3/demo/jfc/FileChooserDemo/src

There you will find instructions and examples that show how to implement the
javax.swing.FileFilter abstract class. Cut and paste this code into your program (however,
you might want to name the class something other than ExampleFileFilter). You can then
add filters to the fDialog JFileChooser dialog object using code such as

ExampleFileFilter filter = new ExampleFileFilter();
filter.addExtension("txt");
filter.addExtension("html");
filter.addExtension("java");
filter.setDescription("*.java, *.html, *.text ");
fDialog.setFileFilter(filter);

Note

Beware that Java has two FileFilter classes, apparently a minor JDK
naming error. If this causes a conflict for you in creating file filters, use the
full package and class names java.io.FileFilter and
javax.swing.filechooser.FileFilter to distinguish between the two classes.

JColorChooser
Finally in this section is one more standard dialog that I think is one of the best looking
windows of its kind in any GUI toolkit I've used. If you like rainbows, you'll love this one.
Use JColorChooser to give users a handy way to select colors, either by clicking samples
displayed on a colorful grid; by selecting hue, saturation, and brilliance values; or by
specifying Red, Green, and Blue color levels. The JColorChooser class also displays
sample text areas to show how color selections look.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

416

JColorChooser is not a dialog box, but I describe it here because its operation is usually
associated with dialogs. You can install a JColorChooser component in any window — if
you want to create a separate window for it, just add it to a JFrame or JDialog container,
and then call that object's show() method. Figure 22-7 doesn't do justice to the
JColorChooser's colorful display. Listing 22-7, ColorDemo.java, shows how to use the
component. To illustrate how to respond to a color selection, the program also paints a
box along the top of the window. You don't usually need to add this code, however,
because the JColorChooser class provides its own color preview area (see the bottom of
the window in the figure).

insert fg2207.jpg

Figure 22-7
JColorChooser is a capable color-select component useful in dialogs.

Listing 22-7
ColorDemo.java
001: import javax.swing.*;
002: import javax.swing.event.*;
003: import java.awt.*;
004: import java.awt.event.*;
005:
006: public class ColorDemo extends JFrame {
007:
008: private JColorChooser colorChooser; // The Color chooser
009: private JPanel colorBox; // Color sample
010: private Color selectedColor; // Selected color
011:
012: // Constructor does all the setup work
013: public ColorDemo() {
...
028: // Set current color and sample panel (top)
029: selectedColor = Color.white;
030: colorBox = new JPanel();
031: colorBox.setBackground(selectedColor);
032: colorBox.setPreferredSize(new Dimension(150, 100));
033: colorBox.setBorder(

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

417

034: BorderFactory.createLineBorder(Color.black));
035:
036: // Create color chooser and change event listener
037: colorChooser = new JColorChooser(selectedColor);
038: colorChooser.getSelectionModel().addChangeListener(
039: new ChangeListener() {
040: public void stateChanged(ChangeEvent e) {
041: selectedColor = colorChooser.getColor();
042: colorBox.setBackground(selectedColor);
043: }
044: }
045:);
046:
047: // Add the sample color pane and chooser to the frame
048: Container content = getContentPane();
049: content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS));
050: content.add(colorBox);
051: content.add(colorChooser);
052: }
...
060: }

To use JColorChooser, create an object of that class and, usually, one of Color to save the
current selection. Lines 008-010 in the sample program declare these variables along with
a JPanel container for showing the selected color. The color chooser component is easy to
create. Optionally specify an initial color value in parentheses:

colorChooser = new JColorChooser(Color.white);

To respond to the user's color selections, create a ChangeListener object as shown at lines
038-045. Because JColorChooser is built by implementing the ColorSelectionModel
interface, the event handler is correctly associated with an object of that type, in this case
by using an anonymous class to implement the interface. Write a ChangeListener()
method as shown — it is called for every color selection. To find that selection, the
demonstration calls the colorChooser object's getColor() method. Line 042 paints the
sample panel's background using this choice, but if you are simply designing a color-
selection dialog, you can cut out this code.

Text Objects
The simplest text class is JLabel. Of course, you can use it to display static text, but you
can also add an icon for a little extra visual punch. In addition, JLabel can now display
HTML-encoded text. (JButton can do the same, and other Swing components that display
text labels are expected to follow suit.) Listing 22-8 demonstrates a few ways to use
JLabel. Figure 22-8 shows the program's window.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

418

insert fg2208.jpg

Figure 22-8
JLabel can display simple text, icons, and HTML-formatted text.

Listing 22-8
LabelDemo.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class LabelDemo extends JFrame {
006:
007: // Constructor does all the setup work
008: public LabelDemo() {
...
023: // Place components in a pane for better appearance
024: JPanel pane = new JPanel();
025: pane.setLayout(new GridLayout(3, 1, 2, 2));
026: pane.setBorder(BorderFactory.createEmptyBorder(10, 10, 10,
0));
027:
028: // Create a simple label using default text
029: JLabel titleLabel = new JLabel("Three little labels");
030:
031: // Add an icon image to a label
032: ImageIcon mailIcon = new ImageIcon("mailbox.gif");
033: JLabel mailLabel = new JLabel(mailIcon, JLabel.LEADING);
034: mailLabel.setText("You have mail");
035:
036: // Use HTML to format a label's text font and size
037: String s = "<html>"
038: + "<i>Check this out!</i>"
039: + "</html>";
040: ImageIcon handIcon = new ImageIcon("righthand.gif");
041: JLabel htmlLabel = new JLabel(s, handIcon, JLabel.CENTER);
042:
043: // Add components to the pane, and the pane to content layer
044: pane.add(titleLabel);
045: pane.add(mailLabel);
046: pane.add(htmlLabel);
047: getContentPane().add(pane);
048: }
...
056: }

Use the ImageIcon class to load a GIF, JPEG, or PNG file with the image to display
along with a JLabel's text. Lines 032-034 show a good way to do this. When creating the
JLabel object, pass the loaded ImageIcon as the first argument, followed by a JLabel
constant such as LEADING to position the icon ahead of the text. Among others, you can

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

419

use constants such as BOTTOM, CENTER, TOP, and TRAILING to position the icon.
(For a full list of positioning constants, see Java's online documentation for JLabel.)

One of Java's prime attractions is its cross-platform support. However, that support
complicates certain operations such as specifying fonts, font sizes, and other
characteristics such as italic and bold text. HTML is one good answer to this problem,
and now JLabel can format text using tags such as . Lines 037-041 show how to
use this feature to display the text @@dpCheck this out!@@dp along with an icon (see
Figure 22-8). You can pass HTML text directly to a JLabel constructor, but I like to use a
String variable to prepare the text. The string should have the general form:

String s = "<html>text</html>";

As shown in the listing, between the opening and closing tags, <html> and </html>, you
can insert a tag, and use and <i> bold and italic modifiers. You can also use
other tags — consult a reference to HTML programming for all available options. For
clarity and easier editing, I like to use the string concatenation operator as shown to join
each element of the string, but you can type the string all on one line if you want.
Apparently, the ending </html> tag is optional; however, it's probably best to include it
anyway just in case it is someday required.

Tip

HTML text can include new-line control codes, \n, but these seem to work
only with multiline text components such as JTextArea, not for JLabel. If
you need multiline labels, it is probably best to create multiple JLabel
objects, one for each line, or use JTextArea as described after the
following section.

JTextField
Of course, most programs need ways to input text as well as to display it. For single-line
entry fields, use a JTextField object. Listing 22-9, Password.java, demonstrates how to
use JTextField to prompt users for their names. The program also shows how to use the
related JPasswordField to prompt for a password, which is not displayed onscreen. Figure
22-9 shows the program's display along with a confirmation dialog that reveals the
password entered. And no, that's not one of my real passwords.

insert fg2209.jpg

Figure 22-9
Use JTextField and JPasswordField to prompt for single-line text entries.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

420

Listing 22-9
Password.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class Password
006: extends JFrame implements ActionListener {
007:
008: JTextField username;
009: JPasswordField password;
010: JButton logon;
011:
012: // Constructor does all the setup work
013: public Password() {
...
028: // Use inner panel for a neat appearance
029: JPanel pane = new JPanel();
030: pane.setLayout(new GridLayout(3, 2, 2, 2));
031: pane.setBorder(
032: BorderFactory.createEmptyBorder(10, 10, 10, 0));
033:
034: username = new JTextField(16);
035: password = new JPasswordField(16);
036: logon = new JButton("Logon");
037: logon.addActionListener(this);
038:
039: // Prevent user from resizing this JFrame
040: setResizable(false);
041:
042: // Add components to the pane, and the pane to content layer
043: pane.add(new JLabel("User name:"));
044: pane.add(username);
045: pane.add(new JLabel("Password:"));
046: pane.add(password);
047: pane.add(new JLabel("Click button to logon:"));
048: pane.add(logon);
049: getContentPane().add(pane);
050: }
051:
052: public void actionPerformed(ActionEvent e) {
053: Object source = e.getSource(); // Which component?
054: if (source.equals(logon)) {
055: // *** WARNING: SECURITY DANGER
056: char[] ptext = password.getPassword(); // ok
057: String s = new String(ptext); // ???
058: JOptionPane.showMessageDialog(this, "Password: " + s);
059: // Erase password for safety
060: for (int i = 0; i < ptext.length; i++)
061: ptext[i] = 0;
062: // *** END SECURITY DANGER

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

421

063: }
064: }
...
072: }

JTextField and its subclass JPasswordField are easy to use. Create objects as follows,
specifying widths as positive integer values in parentheses:

JTextField username = new JTextField(16);
JPasswordField password = new JPasswordField(16);

The two objects scroll horizontally if necessary — the integer values merely size the
component in the window. Add each component to the frame's content layer, or use a
JPanel or other container as shown in the sample listing. Notice how line 040 prevents
users from resizing the frame:

setResizable(false);

Because the program uses the GridLayout manager, this is necessary to prevent the entry
fields from being resized ridiculously if, for example, the user expands the window to full
screen. You may want to use that statement when designing dialogs that contain
JTextField entry fields, or use a different layout manager such as BoxLayout to prevent
components from being resized along with the window.

Lines 052-064 provide an actionPerformed() method that is registered for the sample
program's "Logon" button. This demonstrates how to retrieve the text from a
JPasswordField object. Calling getPassword() returns an array of char, containing the
entered password. This poses a security risk, especially because Java objects cannot be
explicitly disposed but are destroyed by the garbage collector at an unspecified future
time. For this reason, Sun recommends that you overwrite the returned char array as
shown at lines 060-061.

Tip

To obtain text entered into a JTextField object, call the getText() method
inherited from JTextComponent, JTextField's immediate superclass. That
method is disabled for JPasswordField. When using that class, the only
way to retrieve entered text is to call getPassword().

JTextArea
For multiline text displays and entries, create a JTextArea object. Most often, you can
insert that object into a JScrollPane to provide for automatic vertical and horizontal
scrolling, without requiring any supporting code or event handlers. However, you may
use a plain JTextArea object if you don't need scrolling. Listing 22-10, TextDemo.java,
demonstrates how to use JTextArea and JScrollPane. Figure 22-10 shows the program's
display after cutting and pasting some text into the window.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

422

insert fg2210.jpg

Figure 22-10
Use JTextArea and JScrollPane to provide multiline text areas.

Listing 22-10
TextDemo.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class TextDemo extends JFrame {
006:
007: // Constructor does all the setup work
008: public TextDemo() {
...
023: // Use inner panel for a neat appearance
024: JPanel pane = new JPanel();
025:
026: // Create text area object
027: JTextArea theText = new JTextArea();
028: theText.setFont(new Font("Courier", Font.PLAIN, 12));
029: theText.setLineWrap(false);
030:
031: // Add a scroller to the text area object
032: JScrollPane scroller = new JScrollPane(theText);
033: scroller.setPreferredSize(new Dimension(300, 150));
034: scroller.setVerticalScrollBarPolicy(
035: JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
036:
037: // Create a label for the text area object
038: String s = "<html>"
039: + "Text area:"
040: + "</html>";
041: JLabel inputLabel = new JLabel(s);
042: inputLabel.setLabelFor(theText);
043: inputLabel.setAlignmentX(Component.LEFT_ALIGNMENT);
044:
045: // Add all components to the content pane
046: pane.add(inputLabel);
047: pane.add(scroller);
048: getContentPane().add(pane);
049: setResizable(false);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

423

050: }
...
058: }

In addition to constructing a JTextArea object, you can also specify a font and state
whether lines should wrap, as follows:

JTextArea theText = new JTextArea();
theText.setFont(new Font("Courier", Font.PLAIN, 12));
theText.setLineWrap(false);

For a different style, change PLAIN to BOLD or ITALIC (or to combine both styles, use
the logical expression BOLD | ITALIC). See the Font class in the java.awt package for
other constants and methods you can use. The last statement calls setLineWrap() to
specify whether lines should wrap around at the component's edge (true). If line wrapping
is set to false, a horizontal scroll bar appears if text extends beyond the right edge, but
only if the JTextArea object is embedded in a JScrollPane. Do that as follows:

JScrollPane scroller = new JScrollPane(theText);
scroller.setPreferredSize(new Dimension(300, 150));
scroller.setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

First, construct the JScrollPane object, passing the JTextArea object to embed. Next,
although optional, call setPreferredSize() so the layout manager can properly size the
components. You have to do this only for the scroll pane. Finally, call
setVerticalScrollBarPolicy(), passing the JScrollPane constant shown. Or, you may
change that constant to VERTICAL_SCROLLBAR_NEVER to never display a vertical
scroll bar, or to VERTICAL_SCROLLBAR_ALWAYS to display one even if not needed.
Call setHorizontalScrollBarPolicy() with similar constants (but change VERTICAL to
HORIZONTAL) to dictate a horizontal scroll bar policy. This is usually not necessary,
since horizontal scroll bars are warranted depending on whether line wrapping is enabled.

Lists
Lists are useful for — well, listing things, naturally. Swing has two basic list varieties.
Use a plain JList for a fixed list of items such as the days of the week or the months of
the year. Use a JComboBox for lists from which users can select entries, but can also
enter new text. You can program either object to permit single or multiple selections. The
following sections show examples of both of these handy components.

JList
Listing 22-11, ListDemo.java, shows how to use a JList object to present users with a list
of fixed choices, here the days of the week. Figure 22-11 shows the program's window. If
the list is larger than its window container, a vertical scrollbar appears automatically if
the JList object is embedded in a JScrollPane.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

424

insert fg2211.jpg

Figure 22-11
JList presents users with a fixed list of selections.

Listing 22-11
ListDemo.java
001: import javax.swing.*;
002: import javax.swing.event.*;
003: import java.awt.*;
004: import java.awt.event.*;
005:
006: public class ListDemo extends JFrame {
007:
008: private JFrame frame; // Refers to this JFrame window
009: private JLabel label; // Shows current selection
010:
011: // Constructor does all the setup work
012: public ListDemo() {
...
027: frame = this; // So event handler can find our window
028:
029: String[] items = {
030: "Sunday", "Monday", "Tuesday", "Wednesday",
031: "Thursday", "Friday", "Saturday"
032: };
033: JList dayList = new JList(items);
034: dayList.setSelectionMode(
035: ListSelectionModel.SINGLE_SELECTION);
036: dayList.setAlignmentX(Component.CENTER_ALIGNMENT);
037: JScrollPane listScroller = new JScrollPane(dayList);
038:
039: // Respond to a list selection event
040: dayList.addListSelectionListener(
041: new ListSelectionListener() {
042: public void valueChanged(ListSelectionEvent e) {
043: JList list = (JList)e.getSource();
044: if (!list.isSelectionEmpty()) {
045: int i = list.getSelectedIndex();
046: String s = (String)list.getModel().getElementAt(i);
047: label.setText("Selection: " + s);
048: }
049: }
050: }
051:);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

425

052:
053: label = new JLabel("Select a day");
054: Container content = getContentPane();
055: content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS));
056: content.add(label);
057: content.add(listScroller);
058: }
...
066: }

The first step in using JList is to provide the text for the list's selections. This text might
come from a file or other source, but it is most easily programmed as an array of String
objects as shown at lines 029-032. Pass the array to the JList constructor (see line 033).
After constructing the list object, call setSelectionMode() like this:

yourList.setSelectionMode(
 ListSelectionModel.SINGLE_SELECTION);

Change SINGLE_SELECTION to SINGLE_INTERVAL_SELECTION to permit
multiple contiguous selections. Or use MULTIPLE_INTERVAL_SELECTION to permit
multiple selections that do not have to be contiguous. The keys that users press to make
multiple selections depend on the current look-and-feel, but generally, the Shift key
makes contiguous selections, and the Ctrl key non-contiguous selections, and the user
may use either the keyboard arrow keys or the mouse to navigate the list.

Tip

Embed a JList object in a JScrollPane if you want a vertical scroll bar to
appear automatically as needed. You can further configure the scroll pane
as explained in the section on JTextArea in this chapter. Horizontal scroll
bars are never displayed for JList.

Of course you also need to provide code that responds to the user's selection. To
demonstrate one way to write that code, the sample program displays the current
selection in a label above the list (see Figure 22-11). This capability is enacted by calling
the addListSelectionListener() method for the JList object to listen for a selection event.
Usually, you can create an object of an anonymous class that implements the
ListSelectionListener interface (in the javax.swing.event package) as follows:

dayList.addListSelectionListener(
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 // ... handle list selection here
 }
 }
);

Take care to type the punctuation exactly as shown. The two closing braces end the
valueChanged() method and the anonymous class declaration respectively. The final
close parenthesis and semicolon end the call to addListSelectionListener(). Despite
appearances, this is a statement, and so it must end with a semicolon.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

426

Note

As mentioned elsewhere, a programming editor such as Emacs that
automatically matches parentheses and braces goes a long way in
preventing compilation errors caused by simple typing mistakes. This is
especially true in Java programming in which the use of anonymous and
inner classes is becoming ever more popular. Emacs is available in most
UNIX and Linux installations. Its unusual name originates from its early
days as a collection of "Editor Macros," but the program has evolved way
beyond its humble beginnings. Incredibly, Emacs is written in Lisp.
Versions of the program are available for Windows and Macintosh, but I
haven't tried them. For more information and a list of supported platforms,
try one of the following links:
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/windows/ntemacs.html

In the method, add statements to respond to a selection from the list. First, obtain a
reference to the list object:

JList list = (JList)e.getSource();

If you already have such a reference, you can skip this step, but it ensures that the correct
list object is used. It is usually also a good idea to check whether no selections have been
made, although this might not be strictly necessary:

if (!list.isSelectionEmpty()) {
 // ... get selection
}

Inside that statement, obtain an index to the selected item:

int i = list.getSelectedIndex();

To get the actual text requires some complex-looking code:

String s = (String)list.getModel().getElementAt(i);

The JList class is based on a list model that is responsible for the list object's operation.
Call getModel() as shown to obtain a reference to the model, for which you can call
methods such as getElementAt() to obtain the selected string.

JComboBox
JComboBox offers a different way to present users with selection lists. Unlike JList,
JComboBox can present users with a static list of selections, but it can also allow users to
enter new items. This is highly useful for lists such as country names that present a fixed
list of selections, but must also allow users to enter alternate text not in the original list.

Note

It is natural to consider JComboBox to be a descendant of JList, but
unfortunately, that is not the case. The two classes are siblings (they are
both subclasses of JComponent) but are otherwise unrelated. As a result,

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

427

different techniques are required to use these two components despite
their apparent similarities in operation.

Listing 22-12, ComboDemo.java, demonstrates how to use JComboBox and to respond to
user selections. Run the program and select a month name from the list by clicking the
component's drop-down arrow. Also try entering a new entry into the component's text-
entry field. Of course, you probably wouldn't do this for a list of month names, but this
shows how a JComboBox can optionally be made editable. Figure 22-12 shows a sample
of the program's window.

insert fg2212.jpg

Figure 22-12
JComboBox presents an optionally editable list of selections.

Listing 22-12
ComboDemo.java
001: import javax.swing.*;
002: import javax.swing.event.*;
003: import java.awt.*;
004: import java.awt.event.*;
005:
006: public class ComboDemo extends JFrame {
007:
008: private JFrame frame; // Refers to this JFrame window
009: private JLabel label; // Shows current selection
010:
011: // Constructor does all the setup work
012: public ComboDemo() {
...
027: frame = this; // So event handler can find our window
028: label = new JLabel("Select a month");
029:
030: String[] items = {
031: "January", "February", "March", "April", "May",
032: "June", "July", "August", "September", "October",
033: "November", "December"
034: };
035: JComboBox months = new JComboBox(items);
036: months.setSelectedIndex(0);
037: months.setEditable(true);
038: months.addActionListener(

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

428

039: new ActionListener() {
040: public void actionPerformed(ActionEvent e) {
041: JComboBox box = (JComboBox)e.getSource();
042: String s = (String)box.getSelectedItem();
043: label.setText("Selection: " + s);
044: }
045: }
046:);
047:
048: JPanel pane = new JPanel();
049: pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
050: pane.setBorder(
051: BorderFactory.createEmptyBorder(20, 20, 20, 20));
052: pane.add(label);
053: pane.add(months);
054:
055: getContentPane().add(pane, BorderLayout.CENTER);
056: }
...
064: }

Creating a JComboBox resembles the steps in creating a JList. Start with an array of
String items to be listed in the component:

String[] items = {
 "January", "February", ...
};

Pass the items array to the JComboBox constructor:

JComboBox months = new JComboBox(items);

Next, call the following two methods to specify the initial selection and whether to permit
entering a new item's text:

months.setSelectedIndex(0);
months.setEditable(true);

Always specify an initial index for the selected entry so that one item is shown in the
ComboBox entry field by default. Of course, you may change true to false in calling
setEditable() to disable entry of new items. The default value is false.

Tip

Set a combo box's first entry string to "None," and specify 0 for the initial
selected index. That way, "None" is a selection like any others, neatly
solving the problem of how to permit users to make no entry from a combo
box's list.

Responding to a combo box's selection differs from how to do that with a JList. (Ideally,
these classes would use identical techniques making them interchangeable. They're not.)
Use an ActionListener object to respond to a selection in a combo box. Register the
listener with the component by calling addActionListener() as follows:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

429

months.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 }
 }
);

That creates an anonymous class and implements the ActionListener interface, which
specifies the method, actionPerformed(). Add statements to that method to get the user's
selection from the combo box. First, obtain a reference to the component using the
statement:

JComboBox box = (JComboBox)e.getSource();

After that, call getSelectedItem() for the selected item's text. You can then use the string
as you wish. Here it is sent to the program's label to display the current selection. This
works for static and editable combo boxes:

String s = (String)box.getSelectedItem();
label.setText("Selection: " + s);

Note

Do not use the list-model technique shown in the preceding section for
JList. That code compiles for JComboBox, but using the list model fails to
handle the action event resulting from users entering new text into an
editable combo box.

Special Features
Most users now expect programs to feature pop-up menus and toolbars for easier use.
Swing makes creating these special and popular features quick and easy, but as the
following sections explain, there are a few gotchas to observe so they don't getcha.

JPopupMenu
Creating a pop-up menu is similar to how you create a root panel's pull-down menu (see
"Creating Pull-Down Menus" in Chapter 21). In fact, a pull-down menu is really just a
pop-up menu that is rooted in a JMenuBar object. Listing 22-13, PopupDemo.java,
demonstrates how to use Swing's JPopupMenu class to create a pop-up menu, and how to
respond to item selections. Run the program and click inside the window to bring up the
pop-up menu, shown in Figure 22-13. Select any command to see a message dialog
confirmation (only one command, Exit, actually works).

Note

Usually, clicking the right mouse button brings up a pop-up menu, but this
depends on the system's look-in-feel, and possibly on the mouse's
configuration. Unlike with many GUI toolkits, with Java and Swing, there is
no need to write code for such concerns.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

430

insert fg2213.jpg

Figure 22-13
Pop-up menus are quick and easy to create using Java's Swing library.

Listing 22-13
PopupDemo.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class PopupDemo
006: extends JFrame implements ActionListener {
007:
008: // This is the popup menu object
009: protected JPopupMenu popupMenu;
010:
011: // These are the popup menu items
012: protected JMenuItem openMenuItem;
013: protected JMenuItem saveMenuItem;
014: protected JMenuItem closeMenuItem;
015: protected JMenuItem exitMenuItem;
016:
017: // Inner class pops up the menu when the proper mouse
018: // click or release is detected for the current look and feel
019: class PopupHandler extends MouseAdapter {
020: public void mousePressed(MouseEvent e) {
021: if (e.isPopupTrigger())
022: popupMenu.show(e.getComponent(), e.getX(), e.getY());
023: }
024: public void mouseReleased(MouseEvent e) {
025: if (e.isPopupTrigger())
026: popupMenu.show(e.getComponent(), e.getX(), e.getY());
027: }
028: }
029:
030: // Create the popup menu and its commands
031: private void createPopupMenu() {
032: popupMenu = new JPopupMenu();
033: openMenuItem = new JMenuItem("Open");
034: openMenuItem.addActionListener(this);
035: popupMenu.add(openMenuItem);
036: saveMenuItem = new JMenuItem("Save");
037: saveMenuItem.addActionListener(this);
038: popupMenu.add(saveMenuItem);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

431

039: closeMenuItem = new JMenuItem("Close");
040: closeMenuItem.addActionListener(this);
041: popupMenu.add(closeMenuItem);
042: popupMenu.addSeparator();
043: exitMenuItem = new JMenuItem("Exit");
044: exitMenuItem.addActionListener(this);
045: popupMenu.add(exitMenuItem);
046:
047: // Register frame listener so menu pops on the
048: // proper mouse click depending on the look and feel
049: addMouseListener(new PopupHandler());
050: }
051:
052: // Constructor
053: public PopupDemo() {
...
068: createPopupMenu();
069: Container content = getContentPane();
070: content.add(new JLabel("Click inside the window"));
071: }
072:
073: // All popup menu items are registered on this event handler
074: public void actionPerformed(ActionEvent e) {
075: JMenuItem menuItem = (JMenuItem)e.getSource();
076:
077: // Show selected command text (just for demonstration)
078: JOptionPane.showMessageDialog(this,
079: "Command: " + menuItem.getText());
080:
081: // Find out which command was selected
082: if (menuItem.equals(openMenuItem)) {
083: // ... do open command
084: }
085: if (menuItem.equals(saveMenuItem)) {
086: // ... do save command
087: }
088: if (menuItem.equals(closeMenuItem)) {
089: // ... do close command
090: }
091: if (menuItem.equals(exitMenuItem)) {
092: System.exit(0); // Only implemented command
093: }
094: }
...
102: }

The demonstratio n's listing is longer than many in this book, but it shows several
important techniques in creating pop-up menus. First, declare a JPopupMenu object to
serve as the menu's container:

protected JPopupMenu popupMenu;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

432

That could be made private or public depending on your needs, but should probably be a
member of the program's main class. In this case, our class extends JFrame and
implements ActionListener (see lines 005-006) to provide for the pop-up menu's
selections. Before writing that code, also declare JMenuItem objects, one for each of the
menu's commands:

protected JMenuItem openMenuItem;
protected JMenuItem saveMenuItem;
protected JMenuItem closeMenuItem;
protected JMenuItem exitMenuItem;

Again, these don't have to be protected. It is possible to do away with these objects, but
as I explain a bit later, having them simplifies the job of detecting which item was
selected. Conversely, the menu items could provide their own event listeners, but it's
more common to have the frame or other container do this job, and in that way make it
possible to add the same JMenuItem objects to the frame's main window (however, the
demonstration doesn't do that).

Lines 030-050 create the action menu items and add them to the pop-up menu. First
create the pop-up menu object:

popupMenu = new JPopupMenu();

Then, create each JMenuItem. Usually, programming each such object takes at least three
steps:

openMenuItem = new JMenuItem("Open");
openMenuItem.addActionListener(this);
popupMenu.add(openMenuItem);

The first statement creates the menu item object. Call addActionListener() to register the
code that responds to the item's selection. Here, the program specifies the frame itself
(this) as the listener, but as mentioned, you could create separate listeners for each item if
you prefer. Finally, add the menu item object to the pop-up menu by calling its add()
method. To display a separator line between items, call addSeparator() like this:

popupMenu.addSeparator();

After creating all menu items, create and register a mouse listener object to cause the
pop-up menu to appear on demand. Because the program's class extends JFrame, the
following statement makes the frame responsible for listening for the appropriate mouse
event:

addMouseListener(new PopupHandler());

PopupHandler is an inner class that provides the code to bring up the pop-up menu. The
class is written as shown at lines 019-028 and is generally programmed using this form:

class PopupHandler extends MouseAdapter {
 public void mousePressed(MouseEvent e) {...}
 public void mouseReleased(MouseEvent e) {...}
}

The class extends MouseAdapter, which implements the MouseListener interface. Using
MouseAdapter this way avoids having to provide bodies for all methods declared in the

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

433

interface — for example, there's no need to respond to mouse movements. It is apparently
necessary to provide code for mouse-pressed and mouse-released events. For instance, in
Windows, a pop-up menu is displayed only after releasing the right mouse button; but
that might not be the case across all platforms. So, for safety, it's best to program both
event handlers using the following code:

if (e.isPopupTrigger())
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
}

Call method isPopupTrigger() for the MouseEvent passed to the method. If this method
returns true, call show() to display the pop-up menu. This should always be done at the X
and Y coordinate values found in the event object. You don't need to write code to
remove the pop-up menu window. It is removed automatically when the user selects a
command or performs another operation such as a mouse click elsewhere in the
program's window.

Lastly, provide code for responding to a menu item's selection. As mentioned, the sample
program does this by having the main class implement the ActionListener interface,
which declares actionPerformed(). Program that method as shown at lines 074-094,
generally using the form

public void actionPerformed(ActionEvent e) {
 JMenuItem menuItem = (JMenuItem)e.getSource();
 // ... use menuItem
}

The first statement insid e actionPerformed() obtains a reference to the menu item that
fired the event. Because the sample program keeps references to the pop-up menu's
JMenuItem objects, it's easy to compare them to the menuItem just obtained to identify
the selected command. For example, this detects the Open command:

if (menuItem.equals(openMenuItem)) {
 // ... do open command
}

This is only one of many ways to program event listeners for objects such as pop-up
menu commands. The next section describes another technique that you may find useful,
especially in cases where multiple GUI objects perform the same operations.

Action Objects
The javax.swing package provides the Action interface to simplify programming event
handlers for multiple objects. This is a typical requirement because, in most GUI
programs, menu items, toolbar buttons, and pop-up menu items typically perform the
same tasks. Instead of requiring listeners for each object, or forcing you to write code to
use one listener for them all, Swing provides the Action interface and associated
AbstractAction class.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

434

Using Action and AbstractAction is a little different from the event-listener techniques
presented so far in this chapter and Chapter 21. For each action, first declare an object,
using the Action interface as the data type:

Action openAction;

In essence, this states that openAction can refer to any object of a class that implements
the Action interface. An anonymous class that extends AbstractAction, which implements
Action, is the usual way to initialize the object. For example, to create an Action object
and assign it to openAction, use code such as this:

openAction = new AbstractAction("Open") {
 public void actionPerformed(ActionEvent e) {
 // ... do Open command
 }
};

That creates an Action object with the text string "Open." Because Action extends
ActionListener, you simply provide an actionPerformed() method to respond to the item's
selection.

All of this may seem overly complicated until you realize that the same Action object
(openAction in this case) may be used to create a menu item, a toolbar button, or a pop-
up menu item. In that way, the identical action is easily programmed for all of these GUI
elements without requiring you to write more than a single actionPerformed() method.
The next section shows a complete example of the technique and also demonstrates how
to add icons to toolbars and pop-up menus.

JToolBar
The final example program in this chapter demonstrates how to create a toolbar of
buttons and a pop-up menu, complete with graphical icons. Listing 22-14,
ToolDemo.java, also shows how to use Action objects as explained in the preceding
section to simplify programming event handlers for multiple GUI objects. The sample
toolbar is floatable — run the program, then click and drag the toolbar to any border, or
drop it inside or outside of the program's window to detach the toolbar entirely from its
parent top-level container. You can disable this feature if you want, but floating toolbars
require only a single line of code, and they provide an extra level of usefulness in GUI
design. Figure 22-14 shows the program's display.

insert fg2214.jpg

Figure 22-14
ToolDemo uses Action objects to program a floating toolbar and a pop-up menu.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

435

Listing 22-14
ToolDemo.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class ToolDemo extends JFrame {
006:
007: // The popup menu object
008: protected JPopupMenu popupMenu;
009:
010: // the toolbar object
011: protected JToolBar toolbar;
012:
013: // Each Action object responds to a toolbar or menu selection
014: Action openAction;
015: Action saveAction;
016: Action closeAction;
017: Action exitAction;
...
032: // Create the Action objects, one for each command in
033: // the toolbar and popup menu
034: protected void createActionObjects() {
035: ImageIcon icon; // For loading the toolbar and menu icons
036:
037: // Create the Open command Action handler
038: icon = new ImageIcon("openicon.gif");
039: openAction = new AbstractAction("Open", icon) {
040: public void actionPerformed(ActionEvent e) {
041: // ... do Open command
042: }
043: };
044:
045: // Create the Save command Action handler
046: icon = new ImageIcon("saveicon.gif");
047: saveAction = new AbstractAction("Save", icon) {
048: public void actionPerformed(ActionEvent e) {
049: // ... do Save command
050: }
051: };
052:
053: // Create the Close command Action handler
054: icon = new ImageIcon("closeicon.gif");
055: closeAction = new AbstractAction("Close", icon) {
056: public void actionPerformed(ActionEvent e) {
057: // ... do Close command
058: }
059: };
060:
061: // Create the Exit command Action handler
062: icon = new ImageIcon("exiticon.gif");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

436

063: exitAction = new AbstractAction("Exit", icon) {
064: public void actionPerformed(ActionEvent e) {
065: System.exit(0);
066: }
067: };
068: }
069:
070: // Create the popup menu and its commands
071: // Assumes all Action objects are initialized
072: protected void createPopupMenu() {
073: popupMenu = new JPopupMenu();
074: popupMenu.add(openAction);
075: popupMenu.add(saveAction);
076: popupMenu.add(closeAction);
077: popupMenu.addSeparator();
078: popupMenu.add(exitAction);
079: }
080:
081: // Create the toolbar
082: // Assumes all Action objects are initialized
083: protected void createToolbar() {
084: toolbar = new JToolBar();
085: toolbar.add(openAction);
086: toolbar.add(saveAction);
087: toolbar.add(closeAction);
088: toolbar.addSeparator();
089: toolbar.add(exitAction);
090: }
091:
092: // Constructor
093: public ToolDemo() {
094:
095: // Select local system look and feel
096: // One of the following two choices produces the best
097: // looking toolbars
098: try {
099: UIManager.setLookAndFeel(
100: "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
101: // "javax.swing.plaf.metal.MetalLookAndFeel");
102: } catch (Exception e) { }
...
111: createActionObjects();
112: createPopupMenu();
113: createToolbar();
114:
115: // Register frame listener so menu pops on the
116: // proper mouse click depending on the look and feel
117: addMouseListener(new PopupHandler());
118:
119: Container content = getContentPane();
120: // BorderLayout is required for a floating toolbar

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

437

121: content.setLayout(new BorderLayout());
122: content.add(toolbar, BorderLayout.NORTH);
123: toolbar.setFloatable(true);
124: content.add(new JLabel("Click inside the window"));
125: }
...
133: }

Note

Because the listing for ToolDemo.java is one of the longest in this chapter,
I cut a few sections that were duplicated in other listings. Cuts include the
inner class that brings up the pop-up menu. See Listing 22-13 (lines 019-
028) for that code, or view the listing online to see the complete text.

Lines 008-017 declare the main variables used in creating the pop-up menu and toolbar.
The pop-up menu is of type JPopupMenu. The toolbar is of type JToolBar. Only one set
of Action objects (see lines 014-017) is needed for both. Each Action object is
programmed with its own event listener as explained in the preceding section. This code
makes up the bulk of the listing at lines 038-068. In addition, ImageIcon is used to load
GIF files for displaying icons in the toolbar and pop-up menu.

Using Action objects greatly simplifies creating the pop-up menu and toolbar. For better
clarity, these jobs are handled in separate methods. For example, createPopupMenu() at
lines 072-079 constructs the pop-up menu:

protected void createPopupMenu() {
 popupMenu = new JPopupMenu();
 popupMenu.add(openAction);
 ...
}

To add each item to a pop-up menu, simply pass an initialized Action object as shown to
an instance of JPopupMenu. The other menu items are added similarly. (Use similar code
to add Action objects to a frame's pull-down menu bar.) To create the toolbar, the
program calls another method:

protected void createToolbar() {
 toolbar = new JToolBar();
 toolbar.add(openAction);
 ...
}

The only difference between the two methods is that one uses a JToolBar object and the
other a JPopupMenu object. The same Action objects are used in both cases. Don't add
the pop-up menu to the frame's content layer — as explained in the preceding section, an
inner class that implements the MouseListener interface is usually the best way to bring
up a pop-up menu in response to the proper mouse click. Finally, add the toolbar to the
frame's content, and you are done — almost.

For best results, use the BorderLayout class for the content layer's manager. In fact, you
must use BorderLayout to create a floating toolbar. In general, follow these steps:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

438

Container content = getContentPane();
content.setLayout(new BorderLayout());
content.add(toolbar, BorderLayout.NORTH);
toolbar.setFloatable(true);

First, obtain the frame's content pane, and specify BorderLayout as the layout manager.
You can then add your toolbar object. Specify NORTH as shown to show the toolbar
initially under the frame's title, or below any pull-down menu. You may use a different
compass heading to change the toolbar's initial location — SOUTH for example. Call
setFloatable() as shown with a true argument to create a floatable toolbar. Set this to false
for a toolbar that is fixed in place, or if your frame's content layer does not use the
BorderLayout manager.

Note

Lines 098-102 in Listing 22-14 select the Motif look-and-feel for the
sample program. Even though Chapter 21 states that selecting a specific
look-and-feel is the least desirable technique, the Motif and Java (Metal)
settings seem to produce the best-looking toolbars and pop-up menus on
all supported platforms. Try the alternate setting, commented out in the
listing, to display the Java look-and-feel, another good-looking choice. Or
replace this section with the code from another example (for example,
Listing 22-1, lines 011-014) to select the system's native look-and-feel.
Under Windows, however, I think this produces relatively poor results with
toolbar buttons and menu items that are way too large, even ugly. Might
these differences have anything to do with the stormy relations between
Sun and Microsoft? I'd rather not speculate.

Summary
* Swing provides a virtual warehouse of GUI components, too many to describe in

one chapter, maybe too many for an entire book. However, to give you a flying
start with Swing programming, this chapter lists numerous examples of selected
Swing classes. From these examples, and with the help of Java's online
documentation, you should be able to figure out how to use many other classes in
the library.

* Simple JButton objects can display text labels, but you can also dress them up
with graphical icons and HTML-formatting tags. Other useful button classes
described in this chapter include JToggleButton, JRadioButton, and JCheckBox.
JRadioButton objects are usually added to a ButtonGroup to ensure that selecting
one button turns off the others in the group.

* Swing provides several standard dialog boxes that you can use to display
messages and to prompt users for confirmation about dangerous operations such
as throwing away changes to a document. Other dialogs discussed in this chapter
include JFileChooser, used to create file-open and file-save dialogs, and the great-
looking JColorChooser component for selecting display colors.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

439

* JLabel displays simple text items, but most programs also need ways to input text.
For single-line text entry, use JTextField or its subclass JPasswordField. To
prevent security problems, after obtaining a password, be sure to overwrite the
text so it doesn't hang around in memory.

* For multiple-line text displays and entries, use a JTextArea object. To provide
vertical and horizontal scrollbars for this component, you can embed a JTextArea
component in a JScrollPane.

* Swing offers two basic kinds of lists. Use JList to present users with a static list of
selections. Use JComboBox to present drop-down lists, and to optionally provide
a way for users to enter items not on the original list. Both types of lists permit
single or multiple contiguous and non-contiguous selections.

* This chapter ends with program listings that demonstrate two special features that
are becoming old standards in GUI programming, pop-up menus and toolbars.
One way to simplify programming responses to items in these popular elements is
to create Action objects as explained in this chapter. Pop-up menus can be non-
floating or floating, but floating toolbars require the parent container to use the
BorderLayout manager.

Chapter 23 Graphics Techniques

Many GUI applets and applications are programmed entirely using Java components and
icons loaded from files. However, at some point, those and other objects must draw their
graphical images and update themselves so as to maintain the illusion of a desktop full of
overlapping windows. To do that, the objects use Java's graphics capabilities. Of course,
the computer's display is merely a two-dimensional array of pixels. GUI objects and
windows don't really overlap — it's all just an elaborately visual magic show.

Using Java's graphics classes, you can create your own magic and draw anything you
want in an application or applet window. Numerous example programs in this chapter
demonstrate primitive drawing methods, colors, and image handling. You also learn how
to animate a series of images using threaded code for a smooth-running result that can
peacefully coexist with other processes.

In This Chapter

* Programming with paint()

* Adding color

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

440

* Displaying text with fonts

* Showing images

* Creating offscreen and filtered images

* Animating images using threads

Graphics Fundamentals
The extensive Graphics class brings a wide range of system-independent graphics
capabilities to applets and applications. The newer Graphics2D class extends Graphics to
provide improved geometrical methods, coordinate transformations, colors, and text
features.

You never create objects of these abstract classes. Instead, you most often use a Graphics
object passed to a paint() method. Thus the easy way to display graphics is simply to
override paint() and add the statements you need. Just about every GUI object and top-
level window inherit paint() from the Container class. This is true even for buttons, but in
most cases, you'll override paint() in a class that extends JFrame, JApplet, or JDialog.
Following are some examples of how to write a paint() method.

Programming with paint()
A sample application shows the most common way to use the Graphics class to paint
graphics in a window. Figure 23-1 shows the program's display, consisting of a grid on a
yellow background, with a shaded blue rounded rectangle and this book's title, Java 2
Just Click! Solutions. These elements demonstrate the basic graphics techniques of
painting background colors, drawing lines, filling shapes, and showing text. Listing 23-1,
GraphicsApp.java, shows the program's source code.

insert fg2301.jpg

Figure 23-1
GraphicsApp shows how to draw various shapes, lines, and text in an applet's
window.

Listing 23-1
GraphicsApp.java
001: import javax.swing.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

441

002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class GraphicsApp extends JFrame {
006:
007: // Constructor
008: public GraphicsApp() {
009: // Select local system look and feel
010: try {
011: UIManager.setLookAndFeel(
012: UIManager.getCrossPlatformLookAndFeelClassName());
013: } catch (Exception e) { }
014: // End program when window closes
015: addWindowListener(new WindowAdapter() {
016: public void windowClosing(WindowEvent e) {
017: System.exit(0);
018: }
019: });
020: }
021:
022: public void paint(Graphics g) {
023: // Get window size
024: Rectangle r = getBounds(null);
025: // Paint background yellow
026: g.setColor(Color.yellow);
027: g.fillRect(0, 0, r.width, r.height);
028: // Outline window in black
029: g.setColor(Color.black);
030: g.drawRect(0, 0, r.width, r.height);
031: // Draw grid inside window
032: for (int h = 0; h < r.height; h += 10)
033: g.drawLine(0, h, r.width, h);
034: for (int v = 0; v < r.width; v += 10)
035: g.drawLine(v, 0, v, r.height);
036: // Draw overlapping round rectangles
037: int cx = r.width / 8;
038: int cy = r.height / 3;
039: int w = (r.width / 4) * 3;
040: int h = cy;
041: g.setColor(Color.gray);
042: g.fillRoundRect(cx – 4, cy – 4, w, h, 10, 10);
043: g.setColor(Color.blue);
044: g.fillRoundRect(cx + 4, cy + 4, w, h, 10, 10);
045: // Draw text inside outer rectangle
046: Font f = new Font("TimesRoman",
047: Font.BOLD + Font.ITALIC, 24);
048: g.setFont(f);
049: g.setColor(Color.orange);
050: g.drawString("Java 2 Just Click! Solutions", cx + 25, cy +
36);
051: g.drawString("Graphics Demonstration", cx + 35, cy + 66);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

442

052: }
053:
054: public static void main(String[] args) {
055: GraphicsApp app = new GraphicsApp();
056: app.setTitle("Graphics Demonstration (application)");
057: app.setSize(450, 280);
058: app.show();
059: }
060: }

You can use similar programming to create graphics in applets, either in a class
descended from the java.awt.Applet class, or the newer (and recommended) Swing class,
javax.swing.JApplet. To show as many different approaches as possible, this chapter's
examples include a mix of applets and applications using the AWT and Swing
component libraries.

GraphicsApp consists of a large paint() method that draws the program's shapes. The
paint() method is declared in the Container class as

public void paint(Graphics g) {
...
}

The Graphics object g, often called the graphics context, is actually an object of a
subclass provided by the browser or the Java virtual runtime system. This subclass is
tailored to the system so that you can simply draw shapes without having to deal with
low-level issues such as how many colors are supported and the display's resolution.

The paint() method is called whenever the display needs updating. For example, if the
user opens or moves another window that obscures the applet, when the user returns to
the browser, paint() is called to re-create the display. For this reason, your code must
always be prepared to draw its graphics as many times as necessary. This might mean
storing coordinates and other values that can be used to recreate shapes on demand.

GraphicsApp's paint() method begins with a statement that you will find handy in your
own graphical escapades. To find the boundaries of the current window, the method
executes the statement

Rectangle r = getBounds(null);

This creates and sets a Rectangle object, r, to the height and width of the object (the
window in this case) — information that is highly useful in restricting drawing to within
that region. Pass null to getBounds() to create a new instance of the Rectangle class. Or,
if you already have a Rectangle object, you can pass it to getBounds() as follows:

Rectangle r = new Rectangle();
...
r = getBounds(r);

Doing that prevents needlessly creating a new Rectangle object for every call to
getBounds(). This technique replaces the JDK 1.0 bounds() method, now deprecated. Use

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

443

the preceding code in place of the following, which you may find in numerous published
sources and listings:

Rectangle r = bounds(); // ??? deprecated

The sample program uses the Rectangle object obtained from getBounds() to position
graphics relative to the window. (Try resizing the window to see how this works — the
graphics always attempt to fill the window completely.) For example, to paint the
window's background yellow, the program executes these statements:

g.setColor(Color.yellow);
g.fillRect(0, 0, r.width, r.height);

Notice that each statement calls a Graphic's class method in reference to the g object
received by paint(). The first statement sets the drawing color to yellow, specifying that
constant in reference to the Color class, which I'll explain in the next section, "Using
Color."

Calling fillRect() paints a rectangular area in the current color. The coordinate values
passed to fillRect() use the information returned by bounds() to paint the applet's entire
background. To outline that same region in black, the program executes these statements:

g.setColor(Color.black);
g.drawRect(0, 0, r.width, r.height);

Tip

Graphics class methods with "draw" in their names draw outline shapes;
those with "fill" in their names draw filled shapes.

Using two for statements, the program next draws a grid in the current color (black) on
top of the yellow background (see lines 032-035). To draw the lines of the grid, the two
statements call the drawLine() method, which simply connects two points with a solid
line in the current drawing color.

After calculating some integer variables, GraphicsApp draws two rounded rectangles by
calling the fillRoundRect() method. The program then creates and selects a font with the
following statements:

Font f = new Font("TimesRoman",
 Font.BOLD + Font.ITALIC, 24);
g.setFont(f);

The specified font is used to draw the text you see inside the outer blue rectangle. The
following statements display the text at the indicated coordinates, a technique that is
adequate for this program, but not as exacting as needed in many cases:

g.drawString("Java 2 Just Click! Solutions", cx + 25, cy + 36);
g.drawString("Graphics Demonstration", cx + 35, cy + 66);

Note

For more information on drawing text and using fonts, see "The Font
Class" in this chapter.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

444

Using Color
The Color class provides versatile methods and static declarations for specifying color
values. In many cases, you can use this class simply by referring to one of several
constant values such as Color.white and Color.red. These constants are objects of the
Color class, and they can be used wherever a Color object is required. For example, in a
paint() method, set the current drawing or fill color using a statement such as

g.setColor(Color.green);

Or, construct a Color object and pass it to setColor() using statements like these:

Color c = new Color(255, 0, 128);
g.setColor(c);

If you don't want to keep the Color object, create a temporary one as the method
argument, and pass it directly to setColor():

g.setColor(new Color(0, 0, 64));

Any drawing, filling, or text method uses the selected color until you choose another. In
some cases, it is useful to preserve the current drawing color. Do that by calling
getColor()as follows:

Color saveColor = g.getColor();
g.setColor(Color.red);
// ... insert drawing statements here
g.setColor(saveColor); // Restore original color

Internally, Color class objects store color values in a single 32-bit private integer. This
integer stores individual red, green, and blue color intensities as byte values ranging from
0 to 255. To construct the Color.pink constant, for example, the Color class executes the
statement

public final static Color pink = new Color(255, 175, 175);

That gives the pink object a full blob of red, with approximately two-thirds portions each
of green and blue. You can similarly construct your own Color objects, and then call
various methods for them. Listing 23-2, Gradient.java, uses this technique to display
graduated color bands from lighter to darker shades. Figure 23-2 shows the program's
display.

insert fg2302.jpg

Figure 23-2
The Gradient program displays bands of color from lighter to darker shades.

Listing 23-2
Gradient.java

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

445

001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class Gradient extends JFrame {
006:
007: // Constructor
008: public Gradient() {
...
020: }
021:
022: public void paint(Graphics g) {
023: int increment = 40;
024: Rectangle r = getBounds(null);
025: Color c = new Color(50, 255, 50);
026: int x = 0;
027: while (x < r.width) {
028: g.setColor(c);
029: g.fillRect(x, 0, x + increment, r.height);
030: c = c.darker();
031: x += increment;
032: }
033: }
034:
035: public static void main(String[] args) {
...
041: }

Note

As with many of this book's longer listings, I cut out lines that are mostly
duplicated from previous examples. Use this book's Just Click! indexes to
view the full listings on screen.

The sample program constructs a Color object as a shade of green using this statement:

Color c = new Color(50, 255, 50);

Alternatively, you can create Color objects with a single integer value, most conveniently
expressed in hexadecimal. For example, the statement

Color c = new Color(0x00112233);

creates a Color object with red, green, and blue component values of 0x11, 0x22, and
0x33 respectively. The most significant byte, set to 0x00 here, is ignored.

You can also specify floating point red, green, and blue color values. Each value must be
greater or equal to zero and less than 1.0. For example, the following statement constructs
a color value with floating point arguments:

Color c = new Color(1.0f, 0.75f, 0.75f);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

446

Each argument value represents a desired fraction of 255, the maximum color integer
component value. In other words, the floating point argument 0.75f is equivalent to an
integer component value of 191.

Tip

Floating point constants passed to the Color constructor must be followed
by the letter f to indicate that they are of type float.

The Gradient program calls the Color class's darker() method to create a color slightly
darker than the current one. Because this method returns a new Color object, you'll
normally assign its result to the same object for which you call the method:

c = c.darker();

Similarly call brighter() for a color slightly brighter than the current one. Again, this
method returns a Color object that you'll need to assign to a variable. If you don't do this,
nothing will seem to happen. For example, calling either method in the following way
merely throws away the method results and produces no effects on the Color object c:

c.darker(); // ???
c.brighter(); // ???

To obtain a Color object's red, green, or blue component values, call methods getRed(),
getGreen(), or getBlue(). You can also obtain a single integer representation of a Color
object by calling getRGB().This assigns to colorInt the 32-bit integer representation of
the Color constant, magenta:

int colorInt = Color.magenta.getRGB();

The Polygon Class
The Graphics class provides four ways to draw outlined and filled polygons, defined as a
set of coordinate points. Polygons are useful for drawing wire-frame graphics and for
other complex figures. Two of the polygon methods accept integer arrays of coordinate
values. These methods are defined as

void drawPolyline(int xPoints[], int yPoints[], int nPoints);
void fillPolygon(int xPoints[], int yPoints[], int nPoints);

Call drawPolyline() for an outlined shape; call fillPolygon() for one filled with the
current color. Pass two arrays of integer values, representing the x and y coordinates of
each polygon point. The third argument indicates the number of points in the array. More
convenient are the two overloaded Graphics methods — named drawPolygon() and
fillPolygon() — which take as arguments an object of the Polygon class. These methods
are defined as

void drawPolygon(Polygon p);
void fillPolygon(Polygon p);

To use the class, construct a Polygon object using code such as

Polygon p = new Polygon();

Or, if you have arrays of integer coordinates, construct the object with this statement:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

447

Polygon p = new Polygon(xints, yints, numElements);

To add a new point to the object, call the addPoint() method. For example, the following
code fragment creates a triangular Polygon object:

Polygon p = new Polygon();
p.addPoint(50, 0);
p.addPoint(75, 50);
p.addPoint(25, 50);
p.addPoint(50, 0);

Display the resulting polygon, in a paint() method using statements such as these:

g.setColor(Color.blue);
g.drawPolygon(p);
g.setColor(Color.white);
g.fillPolygon(p);

Two additional methods are handy for working with Polygon objects. Call getBounds()
as follows for a Rectangle object that outlines the polygon's points:

Rectangle r = p.getBounds();
g.drawRect(r.x, r.y, r.width, r.height);

The getBounds() method replaces the now deprecated getBoundingBox(), but this seems
to be a name change only. The sample code outlines the polygon with a rectangle. Notice
the order of the Rectangle object's parameters passed to drawRect(). The width is
specified before the height.

The Font Class
For programming graphical text, Java provides two classes — Font and FontMetrics. The
classes are typically used together to create a font and to obtain spacing information for
that font's characters. By font, I mean not only its family — Helvetica or Times Roman,
for example — but also its size and style. The FontMetrics class provides additional
information useful for precise positioning of text.

Listing 23-3, FontDemo.java, displays a list of all available fonts in a JComboBox
component. Run the program and select any font to see a sample of it in a separate
window. Figure 23-3 shows a sample of the program's two windows.

insert fg2303.jpg

Figure 23-3
FontDemo displays available font names; select one for a sample.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

448

Listing 23-3
FontDemo.java
001: import javax.swing.*;
002: import javax.swing.event.*;
003: import java.awt.*;
004: import java.awt.event.*;
005:
006: // Window frame class for showing selected font sample
007: class FontSample extends JFrame {
008: Font font; // Currently shown font
009: String text; // Sample text to display
010:
011: // Constructor
012: public FontSample() {
013: super();
014: font = null;
015: text = "Abcdefg 1234567890 !@#$%^&*()";
016: setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);
017: setSize(425, 120);
018: }
019:
020: // Called before showing window
021: public void changeFont(Font f) {
022: font = f.deriveFont(24.0f); // Resize to 24 pts
023: setTitle(font.getFontName()); // Title = font name
024: if (isShowing()) repaint(); // Repaint if already visible
025: }
026:
027: // Paint sample text using current font in window
028: public void paint(Graphics g) {
029: Rectangle r = getBounds(null);
030: g.setColor(Color.white); // Erase background to white
031: g.fillRect(0, 0, r.width, r.height);
032: if (font != null) {
033: g.setFont(font);
034: g.setColor(Color.black);
035: g.drawString(text, 10, r.height / 2);
036: }
037: }
038: }
039:
040: // Main program class
041: public class FontDemo extends JFrame {
042: final protected Font[] fonts; // Array of fonts
043: final protected FontSample fontSample; // Sample window
044:
045: // Constructor
046: public FontDemo() {
...
060: // Create child sample font window
061: fontSample = new FontSample();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

449

062:
063: // Loading fonts may take a while; tell user
064: System.out.print("Loading font names...");
065:
066: // Get available fonts in 1pt sizes
067: GraphicsEnvironment ge =
068: GraphicsEnvironment.getLocalGraphicsEnvironment();
069: fonts = ge.getAllFonts();
070:
071: // Create a JComboBox object for listing font names
072: JComboBox fontBox = new JComboBox();
073: for (int i = 0; i < fonts.length; i++)
074: fontBox.addItem(fonts[i].getFontName());
075: fontBox.setEditable(false);
076:
077: // Respond to item selection
078: fontBox.addActionListener(
079: new ActionListener() {
080: public void actionPerformed(ActionEvent e) {
081: JComboBox box = (JComboBox)e.getSource();
082: int fontIndex = box.getSelectedIndex();
083: fontSample.changeFont(fonts[fontIndex]);
084: fontSample.show();
085: }
086: }
087:);
...
102: }

Use the GraphicsEnvironment class as shown at lines 067-069 to obtain an array of Font
objects, each one set to a size of one point. This list may take a few seconds or longer to
prepare, so you might also display a message that tells users to wait for the operation to
finish. After getAllFonts() returns, use any of the Font objects to display text, or to set the
font for a JLabel or other component that displays text. Here, the program adds all font
names to a JComboBox component from which the user can select a font name and
display sample text in a child window.

Note

In typesetting, one point equals a space of @@bf1/72 inch. However, due
to imperfections in a display's pixels, this measurement may not be
perfectly accurate on screen.

The sample program's JFrame class, FontSample, at lines 007-038, handles most of the
program's details. The class creates the child window that displays a text sample using the
selected font. The window stays visible unless the user closes it, and it is automatically
closed along with its parent window. To keep the window object alive in memory even if
closed, the class constructor executes the statement:

setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

450

You may do the same for any JFrame object. Other default-close options you can specify
to that method are

DO_NOTHING_ON_CLOSE
DISPOSE_ON_CLOSE
EXIT_ON_CLOSE

The child window, FontSample, implements a paint() method to display sample text
using the current font. Three statements are typically required:

g.setFont(font);
g.setColor(Color.black);
g.drawString(text, 10, r.height / 2);

First, set the font into the graphic's context passed to paint(). Also set the color you want
to use. Be sure to do this every time because the drawing color might have been changed
to the background color, in which case nothing will appear. Finally, call drawString() to
display the text at an X,Y coordinate.

Although the preceding code works just fine, in practice more precise positioning of
graphically drawn text is necessary, especially in cases where the text uses a mix of fonts,
sizes, and styles. For that, you can use the FontMetrics class, discussed next.

Listing Fonts with the Toolkit Class
The FontDemo program in this section shows the correct way to find all available
fonts on the system using the GraphicsEnvironment class. Formerly, there was
only one other way to do this job, but many Java books and documents, as well
as many source code files, still show the older technique. This requires using the
java.awt package's Toolkit class, which serves as a kind of glue between the
AWT and the native tools that provide actual GUI elements.

Because Swing components use no native code, Toolkit is not needed in
programs that use the newer component library. Also, Toolkit is not intended for
application use — for example, even though its createCheckBox() method
creates a native check box component, Java programs should instead instantiate
an AWT or Swing class to create that and all other GUI objects.

However, you may use Toolkit in applets and applications to list available font
names. Do that with code such as
String[] fontNames;
Toolkit tools = Toolkit.getDefaultToolkit();
fontNames = tools.getFontList();

Although this technique works, it is better to use the GraphicsEnvironment class
as demonstrated in this chapter to obtain a list of available fonts. By the way, the
Toolkit class can also load GIF and JPEG image files, although this use of the
class is now also superseded by the Swing library's ImageIcon class. See
"Images" later in this chapter for more information on this use of Toolkit.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

451

The FontMetrics Class
The FontMetrics class, a member of the java.awt package, provides information about a
particular font's rendering. This gives you precise information that you can use to
position text precisely in a component or window. FontMetrics is an abstract class that is
never directly instantiated. Instead, call a method such as getFontMetrics() in the
Graphics class as shown in this section to obtain a FontMetrics object. That object is
actually of a class that extends FontMetrics according to the current system. Obviously,
fonts differ greatly across the platforms that Java supports, and information about a
particular font rendering is available only at runtime.

Using FontMetrics isn't difficult, but it requires a good understanding of a few terms from
the world of professional typesetting. These terms — baseline, leading, ascent, descent,
height, and advance — represent specific elements in the spacing of characters on lines
of text. (By the way, leading is pronounced like sledding, not bleeding. A reference to the
olden days of hot-lead typesetting, leading equals the amount of space above the tallest
character in a font.)

Figure 23-4 shows how the various typesetting terms apply to the spacing of text. The
Reference point is the location of the coordinate values passed to a method such as
Graphics.drawString(). This location is on the baseline at the beginning of the first
character in the string. The other values are relative to the reference point.

insert fg2304.jpg

Figure 23-4
Typesetting terms exactly describe the spacing of text using a specific font.

To use the FontMetrics class, first assign a Font object by calling the Graphics method
setFont(). Usually, you'll do this in a paint() method, but if you want to prepare text-
positioning variables elsewhere, you can obtain a Graphics context object by calling
getGraphics():

Graphics g = getGraphics();

Next, create a Font object, and assign it to the Graphics context:

Font f = new Font("Helvetica", Font.PLAIN, 14);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

452

g.setFont(f);

You may skip those two steps if you want to use the default font, or if one has already
been set into the Graphics object by other means. Finally, obtain a FontMetrics object for
the selected font by calling getFontMetrics() in reference to the Graphics context object:

FontMetrics fm = g.getFontMetrics();

This gives you extensive information in one handy package that you can use to position
text with precision. Remember that this information is accurate for only the current font.
If you set a different font into the Graphics context object, you must again call
getFontMetrics(). To inspect the Font referenced by a FontMetrics object, call the
getFont() method. You might do that to save the current Font object using this statement:

Font saveFont = fm.getFont(); // Save font referenced by fm

The FontMetrics class provides several methods that are most commonly used to get
spacing information for a specific font rendering (refer back to Figure 23-4). These
methods are as follows:

* int getLeading() — Returns the standard leading, also called the inter-line spacing.
Use this value to reserve space below the descent of a preceding line. This is not
necessarily the maximum leading for all characters in the font.

* int getAscent() — Returns the standard ascent of most characters in the font,
equal to the space from the average tallest character to the baseline. This is not
necessarily the maximum ascent for all characters in the font.

* int getDescent() — Returns the standard descent of most characters in the font,
equal to the space below the baseline that characters such as g and y dangle their
tails. Some characters may extend beyond the space indicated by this method.

* int getHeight() — Returns the standard height of most characters in the font, equal
to the sum of the standard leading, ascent, and descent values. Some characters
may be taller than indicated by this method.

* int getMaxAscent() — Returns the maximum ascent of any character in the font.

* int getMaxDescent() — Returns the maximum descent of any character in the font.

* int getMaxAdvance() — Returns the maximum advance width of any character in
the font, equal to the character's width plus space to the right, up to the beginning
of the next character. If this value is not known, getMaxAdvance() returns –1.

Note

The JDK 1.0 incorrectly spelled getMaxDescent() as getMaxDecent(),
which is now deprecated. The misspelled method is still available in
FontMetrics for backwards compatibility with older programs. Of course,
you should now use the correctly spelled method.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

453

The first four of the preceding methods return standard information that, in most cases, is
probably all you need for positioning text accurately. If you use these standard values,
however, some text might not be exactly spaced — a character's descent might extend a
bit too low and touch another character on a line below. The other three methods return
maximum values that are guaranteed not to be violated, but might produce too widely
spaced text for most characters. In most cases, it is safe to use the standard values and
risk an occasional spacing problem.

Six other methods in FontMetrics provide additional information about the width of
specific characters and strings. (Refer again to Figure 23-4.) These methods are

* int charWidth(int ch) — Returns the advance width of the specified character
code value.

* int charWidth(char ch) — Returns the advance width of the specified character.

* int stringWidth(String str) — Returns the sum of the advance widths of all
characters in the specified String object.

* int charsWidth(char data[], int off, int len) — Returns the sum of the advance
widths of len characters in the char array, starting with the character at data[off].

* int bytesWidth(byte data[], int off, int len) — Returns the sum of the advance
widths of len characters in the byte array (presumably holding ASCII character
data), starting with the character at data[off].

* int[] getWidths() — Returns an array of integer values equal to the advance
widths of the first 256 characters in the selected font.

Images
There are two fundamental ways to load and display bit-mapped images. One technique
is relatively difficult to master but works with all versions of Java 2 as early as the JDK
1.1. The second technique uses the new Swing library's ImageIcon class. Because not
everyone is ready to move up to Swing, the following sections explain how to use the
Image and MediaTracker classes to load and display GIF and JPEG image files. Only
ImageIcon supports the newer PNG graphics file format. See "ImageIcon" later in this
chapter for a discussion of the newer Swing image techniques.

Image Display methods
Although the Graphics class provides several overloaded drawImage() methods for
displaying image files, and the Applet and Toolkit classes provide overloaded getImage()
methods for loading image data, using these methods correctly takes careful
programming. Loading image data — especially over the Internet using a slow dialup
connection — is a time-consuming chore that must not be allowed to interfere with other
processes. This is especially important when animating multiple images and when

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

454

displaying large pictures. While an image is loading and forming onscreen, users expect
to be able to read other text and to interact with other components. This means that calls
to getImage() and drawImage() must be in one or more separate threads that run
concurrently with other processes.

The following sections explain how to program applets to display static images, and also
how to create animations that display multiple image files. In both cases, threaded code
handles the loading and displaying of image data to ensure a smoothly running result.

The Image Class
The java.awt package provides the Image class as an object-oriented abstraction of a bit-
mapped image. Using this class requires understanding four categories of images as
follows:

* Images: These objects represent the actual image data, rendered in memory
according to the requirements of the local operating system.

* Image observers: These are objects that monitor image loading and display
images when they are ready. Technically, an image observer is an object of any
class that implements the ImageObserver interface. The ImageObserver interface
requires a method, imageUpdate(), that is called when an image, or a portion of an
image, is ready for display.

* Image producers: These are objects that provide a source for image data. Think of
them as conduits through which image data flows.

* Image consumers: These are objects that provide for the use or display of image
data. A component such as a button that displays an image is a good example of
an image consumer. Because the Applet class lists Component among its
ancestors, applets can also be image consumers. The same is true for the newer
Swing JApplet class.

You do not construct Image objects as you do others, even though the class has a default
constructor. Instead, to construct an Image object, you commonly use one of the
following two techniques:

* In an applet, call Applet.getImage() to load an image file. In an application, call
Toolkit.getImage(). You may do the same for the Swing JApplet class, which
inherits getImage() from Applet, but as mentioned, if you are programming with
Swing, you may want to use the ImageIcon class to load images.

* Call Component.createImage() to prepare a new image, usually for creating an
offscreen drawing surface.

This section focuses on the first technique — loading and displaying image files.
"Offscreen Images" later in this chapter shows how to use the second technique to
prepare and use offscreen Image objects.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

455

It's important to realize that an object of the Image class is not simply a collection of
graphics bits in memory. In fact, there is no defined way to access an image's actual
bitmap data. An Image object is an abstraction of that data — a mere interface to the real
visual image, the nature of which is necessarily system-dependent. On disk, a GIF or
JPEG file is essentially a set of instructions for creating this data. In memory, the format
of the image depends entirely on the operating system and hardware. In memory, a
bitmap is a rendered image that can be shown on the system's display.

The more commonly used Image class's public methods are

* int getWidth(ImageObserver observer) — Returns the width of the image in
pixels, or if the image is still loading and the width is therefore unknown as
dictated by the ImageObserver parameter, the method returns –1.

* int getHeight(ImageObserver observer) — Returns the height of the image in
pixels, or if the image is still loading and the height is therefore unknown as
dictated by the ImageObserver parameter, the method returns –1.

* ImageProducer getSource() — Returns the producer, or in other words, the
source of the image. The method is used most often with filtered images — for
example, those that are cropped to a portion of a full image bitmap. (See "Filtered
Images" in this chapter.)

* Graphics getGraphics() — Returns a Graphics context object for drawing to
offscreen images. (See "Offscreen Images" in this chapter.)

* Object getProperty(String name, ImageObserver observer) — Returns a property
defined for the image and labeled according to the String name. A commonly
available property is @@dpcomment@@dp, which identifies the image's author
or other source. If the property is not available, or if the image is still loading as
dictated by the ImageObserver parameter, this method returns UndefinedProperty,
an object of the Object class, defined as a public member of the Image class.

* void flush() — Flushes any image-related system resources such as an in-memory
cache. Calling this method resets the image to its just-loaded or just-created state.
Subsequent uses of the image require reloading or reforming the image from its
source.

Using the Image class properly requires the help of another class, MediaTracker,
explained a bit later. As the next sample program demonstrates, MediaTracker simplifies
the threaded aspects of loading and displaying image files, which as mentioned, must not
interfere with the program's and browser's other processes. This is especially so in applets,
because many users probably have slow dialup Internet connections. For that reason, the
following image-display examples are programmed as applets. However, the same
techniques work in stand -alone applications.

Listing 23-4, ShowPic.java, displays a JPEG image file. The same program can also
display GIF files. To run the program, load the ShowPic.html file into your Web browser

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

456

or the appletviewer utility. Figure 23-5 shows the program's display. The photograph
shows the Space Shuttle Atlantis blasting off pad 39A early evening, February 7, 2001.
(Picture source: NASA, http://spaceflight.nasa.gov/gallery/.)

insert fg2305.jpg

Figure 23-5
ShowPic demonstrates how to load a graphics image using threaded code.

Listing 23-4
ShowPic.java
001: import java.applet.*;
002: import java.awt.*;
003:
004: public class ShowPic extends Applet
005: implements Runnable {
006:
007: // Instance variables
008: Image pic; // GIF image producer
009: int picID; // Arbitrary image ID
010: MediaTracker tracker; // Tracks loading of image
011: Thread loadingThread; // Thread for loading image
012: String filename = "ksc–01pp–0287.jpg"; // Filename
013:
014: // Initialize applet
015: public void init() {
016: // Create MediaTracker object
017: tracker = new MediaTracker(this);
018: // Start image loading
019: pic = getImage(getDocumentBase(), filename);
020: picID = 0;
021: tracker.addImage(pic, picID);
022: // Create thread to monitor image loading

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

457

023: loadingThread = new Thread(this);
024: loadingThread.start();
025: }
026:
027: // Run loading thread
028: // Allows other processes to run while loading
029: // the image data
030: public void run() {
031: try {
032: tracker.waitForID(picID);
033: } catch (InterruptedException ie) {
034: return;
035: }
036: repaint(); // Cause paint() to draw loaded image
037: }
038:
039: // Paint window contents
040: // Displays loading or error message until
041: // image is ready, then shows image
042: public void paint(Graphics g) {
043: if (tracker.isErrorID(picID))
044: g.drawString("Error loading " + filename, 10, 20);
045: else if (tracker.checkID(picID))
046: g.drawImage(pic, 0, 0, this);
047: else
048: g.drawString("Loading " + filename, 10, 20);
049: }
050: }

You might see far simpler image-display programs in various Java tutorials, but as
mentioned, doing this job correctly in a threaded environment requires more care than
might be obvious. The first step is to make the Applet subclass capable of executing a
threaded run() method. Be sure to add implements Runnable to the class declaration as
shown here (see lines 004-005). You can do the same with Swing's JApplet class — I
used Applet in this example, but the techniques are the same for AWT and Swing
programming.

The applet class needs several variables for loading and displaying the image. In the
sample program, these variables are declared as

Image pic;
int picID;
MediaTracker tracker;
Thread loadingThread;
String filename = "ksc–01pp–0287.jpg";

The Image pic object represents the image data and serves as a conduit for its importation
from a source into memory. The integer picID is optional, but it can be used to
numerically identify multiple images. The ID numbers are up to the program to assign
and do not come from the images themselves. A MediaTracker object, named tracker
here, operates as a kind of director that monitors image loading and allows the program to

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

458

do other tasks until the image is ready for display. The single MediaTracker object can
monitor the loading of an unlimited number of images, and it helps keep the program
running fast while simplifying error detection. The Thread object, loadingThread,
cooperates with MediaTracker to load and display one or more images concurrently with
other processes. Finally, a String object represents the image's filename or URL.

The sample applet's init() method prepares the class's variables for use. After sizing the
applet's window, the program creates a MediaTracker object with the statement

tracker = new MediaTracker(this);

Passing this to the MediaTracker constructor tells the object which component, or Applet
subclass object, displays the images. This argument can be any object of a class extended
from Component. For example, a custom component could use a MediaTracker object as
shown here to load a bitmap.

The next step loads the actual image. This uses a sequence of steps that might appear a
little odd:

pic = getImage(getDocumentBase(), filename);
picID = 0;
tracker.addImage(pic, picID);

Despite the method's name, getImage() does not actually load the specified image file,
optionally referenced by a document base URL. Calling getImage() merely starts the
process by which the image is eventually loaded, and the method returns immediately. As
shown here, you can save the returned Image object in a variable (named pic, in this case)
and prepare an optional ID value if needed. The final statement adds the Image object and
its ID to the MediaTracker object, which monitors the image's loading in a separate
thread. The program continues immediately after the call to addImage(). None of these
steps actually loads any image data from disk. That happens a bit later.

By interrogating the MediaTracker object, the program can determine when an image is
available for use. To allow other processes to run concurrently, it's best to call
MediaTracker methods in a separate thread. The sample program's init() method starts
this process by executing the statements:

loadingThread = new Thread(this);
loadingThread.start();

The first statement creates the Thread object. The second statement causes the applet's or
application's run() method to be called. Meanwhile, the MediaTracker object may still be
loading images. To detect when an image is ready, run() calls MediaTracker.waitForID(),
passing the image's ID value assigned by init(). This is done in a try block that catches
InterruptedException, thrown if another thread interrupts this one:

try {
 tracker.waitForID(picID);
} catch (InterruptedException ie) {
 return;
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

459

When the program calls waitForID(), the image begins to load into memory from disk or
over the network. Because this code is executed in a separate thread, other processes can
interrupt this one, in which case run() immediately returns. This might happen, for
example, if the user leaves the applet. When waitForID() returns normally, run() forces a
display update by executing

repaint();

Doing that eventually calls paint() to display the image and any other graphics. However,
even though waitForID() returns normally, the image still might not be ready for display.
For example, its file might be missing, or a glitch might have caused the download to fail.
To detect such problems, paint() again interrogates the MediaTracker object using this if
statement:

if (tracker.isErrorID(picID))
 g.drawString("Error loading " + filename, 10, 20);

If isErrorID() returns false, an error occurred and the image cannot be displayed. To see
the effect of this code, make an intentional error in the image's filename string, and reload
the applet.

Even if no errors are detected, and despite all the preceding code, it's important to keep in
mind that image-loading is taking place in a separate thread — thus, you still have to
verify that the image is ready for display. Do this by calling a MediaTracker method such
as checkID(), which returns true only if the specified image (or other data) is completely
loaded and ready for use. The sample program does this by following the preceding code
with

else if (tracker.checkID(picID))
 g.drawImage(pic, 0, 0, this);

Only if checkID() returns true does paint() call the drawImage() method in reference to
the Graphics context object passed to paint(). The arguments passed to drawImage()
identify the Image, its relative display coordinates, and this as the ImageObserver object
responsible for the rendered image's display.

Finally, if no errors occur, but the image is still not ready for display, paint() shows a
message stating that the image is loading:

else
 g.drawString("Loading " + filename, 10, 20);

When running the sample applet locally, you will have only a brief moment to see this
message. Over a slow dialup connection to a Web site, however, this message tells users
what's going on while they wait for a large image to download.

The MediaTracker Class
The sample ShowPic applet in the preceding section uses the MediaTracker class to
manage the loading of image data. Although the class may seem complex, it is not
difficult to use, and most methods have obvious purposes. This section explains more
about how to use the class.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

460

A MediaTracker object may be created for any Component but is often associated with an
applet's object or an application's top-level frame. For example, the ShowPic applet in
this chapter creates a MediaTracker object using this statement in method init():

tracker = new MediaTracker(this);

To add an Image object to this MediaTracker, call addImage():

tracker.addImage(pic, picID);

This assumes that the Image (pic here) has been constructed by some other means. The
ID is useful when working with multiple images, all of which may be managed by the
same MediaTracker.

After adding an image to a MediaTracker, call the class's methods to determine the
image's status. There are numerous ways to proceed. For example, you can receive a
status integer by calling statusID():

int status = tracker.statusID(picID, true);

This assigns to status the bitwise OR of the appropriate MediaTracker flags: ABORTED,
COMPLETE, ERRORED, and LOADING. The true argument passed to statusID() tells
MediaTracker to begin loading the specified image if it hasn't already done so. You might
try this code, perhaps in a small loop or, better, in a thread, to retry loading in the event of
an error.

Some MediaTracker methods check that all images are available. This is especially useful
in animation programming when you don't want to begin displaying a sequence of images
until they are all ready. Code such as the following example calls a method only if
MediaTracker confirms that all images assigned by addImage() are ready for use:

if (tracker.checkAll(true))
 showPictures();

The true argument, which is optional, tells MediaTracker to begin loading the images if it
hasn't already done so.

Inside an image thread, call a method such as waitForAll() to allow MediaTracker to
continue loading image data without blocking other threads. This will usually be in a run()
method, using a try statement to catch a thread interruption. For example, the following
code gives the MediaTracker 50 milliseconds to load or scale its monitored images:

try {
 tracker.waitForAll(50);
} catch (InterruptedException ie) {
 return;
}
repaint(); // Or other method

The paint() method, or its equivalent if using other display techniques, needs to check
with the MediaTracker to determine whether the images are ready for use.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

461

Offscreen Images
Creating an image offscreen and then displaying the results all at once can help give a
program a snappy appearance by hiding the individual steps that go into forming complex
graphics. The technique also figures prominently in animation when two or more images
with minor changes are kept offscreen, ready for displaying in sequence. This is
sometimes called double buffering. There are four basic steps in creating and using an
offscreen image:

 1. Prepare an Image object in memory to serve as the drawing surface.

 2. Obtain a Graphics context object for drawing to the offscreen image.

 3. Draw onto the offscreen image using Graphics class methods.

 4. Display the Image object the same way you display one loaded from a file.

Listing 23-5, Offscreen.java, demonstrates how to create and display an offscreen image.
As with other sample applets in this chapter, the code is threaded so that, while the image
is forming, other processes continue to run concurrently. Run the applet by loading the
Offscreen.html file, in the same directory as the listing file, into your browser. Figure 23-
6 shows the program's display of 100 colorful ovals, which are painted to an offscreen
image and then displayed all at once with a single command. To see a different pattern,
click the browser's Refresh button.

insert fg2306.jpg

Figure 23-6
The Offscreen applet demonstrates how to paint and display graphics using an
offscreen image.

Listing 23-5
Offscreen.java
001: import java.applet.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

462

002: import java.awt.*;
003: import java.util.Random;
004:
005: public class Offscreen extends Applet
006: implements Runnable {
007:
008: // Instance variables
009: Thread drawingThread;
010: Image offscreenImage;
011: Graphics offscreenContext;
012: Random gen;
013: boolean imageReady = false;
014: int imageW, imageH;
015: int numOvals = 100;
016:
017: // Initialize applet
018: public void init() {
019: // Size applet window
020: imageW = 320;
021: imageH = 240;
022: resize(imageW, imageH);
023: // Construct random number generator
024: gen = new Random();
025: // Create offscreen image and Graphics context
026: offscreenImage = createImage(imageW, imageH);
027: offscreenContext = offscreenImage.getGraphics();
028: }
029:
030: // Create and start drawing thread
031: public void start() {
032: drawingThread = new Thread(this);
033: drawingThread.start();
034: }
035:
036: // Return positive integer at random between
037: // low and high. Assumes low < high and are positive
038: public int nextInt(int low, int high) {
039: return low + (Math.abs(gen.nextInt()) % (high – low));
040: }
041:
042: // Create image using separate thread
043: public void run() {
044: // Paint image background white
045: offscreenContext.setColor(getBackground());
046: offscreenContext.fillRect(0, 0, imageW, imageH);
047: // Create and paint ovals at random
048: for (int i = 0; i < numOvals; i++) {
049: // Select oval color at random
050: Color c = new Color(nextInt(0, 0xffffff));
051: offscreenContext.setColor(c);
052: // Select oval position

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

463

053: int x = nextInt(20, imageW – 20);
054: int y = nextInt(20, imageH – 20);
055: // Calculate oval width and height
056: // so it remains inside image boundaries
057: int w = nextInt(10, Math.min(imageW – x, x));
058: int h = nextInt(10, Math.min(imageH – y, y));
059: // Draw oval to offscreen image
060: offscreenContext.fillOval(x, y, w, h);
061: Thread.yield();
062: }
063: imageReady = true;
064: repaint();
065: }
066:
067: // Paint window contents
068: public void paint(Graphics g) {
069: if (imageReady) {
070: showStatus("Showing image...");
071: g.drawImage(offscreenImage, 0, 0, this);
072: } else {
073: g.setColor(getBackground());
074: g.fillRect(0, 0, imageW, imageH);
075: showStatus("Preparing image...");
076: }
077: }
078:
079: // Override inherited update() method
080: // to prevent screen flicker
081: public void update(Graphics g) {
082: paint(g);
083: }
084: }

This sample applet might seem overly complex, but as with other image code in this
chapter, the extra programming — which handles image creation and display using
separate threads — ensures a smooth result. Because the applet is threaded, its class
implements the Runnable interface. The class also declares several instance variables, the
most important of which are

Thread drawingThread;
Image offscreenImage;
Graphics offscreenContext;

The Thread object, drawingThread, forms the offscreen image using a separate thread, so
that other processes can run concurrently. The Image object, offscreenImage, provides a
surface for drawing offscreen. The Graphics context object, offscreenContext, is provided
by the image for use in calling graphics methods such as fillOval() and directing the
results to the offscreen surface.

Method init() constructs the essential objects to prepare for drawing offscreen. In this
example, the two variables, imageW and imageH, are assigned the same width and height
values used by the applet's window, but they could be different:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

464

offscreenImage = createImage(imageW, imageH);
offscreenContext = offscreenImage.getGraphics();

Calling Component.createImage(), inherited by the extended Applet class, creates an
Image object that you can draw to offscreen. To obtain a Graphics context object for
drawing commands, call Image.getGraphics() as shown for that Image object.

To draw to the offscreen image, call Graphics class methods in reference to the
associated Graphics context object obtained by calling getGraphics(). For example, fill
the offscreen image's background using any color with code such as

offscreenContext.setColor(Color.red);
offscreenContext.fillRect(0, 0, imageW, imageH);

The sample applet performs similar instructions in method run(), which runs concurrently
with other processes. For example, after creating each oval's position and size, this
statement adds a new oval to the image:

offscreenContext.fillOval(x, y, w, h);

To give other processes the opportunity to run, each loop executes this statement:

Thread.yield();

When the image is finished, the thread sets the imageReady flag to true, and calls
repaint(). This initiates an eventual call to paint(), which displays the offscreen image
using the statement:

g.drawImage(offscreenImage, 0, 0, this);

The programming is similar to that used in this chapter's ShowPic applet to display a
graphics file — in other words, the entire image appears at once. Sometimes, you might
want users to see the image forming but still use offscreen drawing. To do this, simply
call repaint() inside the loop that creates the graphics. See how this works by modifying
the sample program. Insert the following two statements into the run() method's for loop,
immediately after the call to Thread.yield() (between lines 061 and 062):

imageReady = true;
repaint();

When you run the modified program, you see each oval as it is created. Even so, the code
is properly threaded, and the image is still formed offscreen — but the entire image is
redisplayed to show each new oval, which is not as efficient as drawing them directly to
the screen. (Click the browser's Refresh button to create a new set of shapes.)

The Offscreen applet also demonstrates a useful trick that eliminates an annoying flicker
you might see when displaying multiple images. This happens because, for top-level
windows such as frames, update() clears the drawing area by filling it with the
background color. When that happens multiple times, the result is a flicker between each
new drawing operation. To eliminate the background painting, override update() and
replace it with this streamlined model:

public void update(Graphics g) {
 paint(g);
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

465

Filtered Images
The AWT package includes a nested package of classes that you can use to filter images.
As a demonstration of these classes, the next sample applet shows how to convert a
colored image into a gray-scale picture. Each pixel of the original image is filtered to an
equivalent pixel of the same intensity, but lacking any color information.

This technique illustrates image producers and consumers. In general terms, a producer is
an object that is used as a source of image data — whether that data is downloaded over a
network, or is loaded from a file on disk. A consumer is an object that serves as a
destination for image data. An applet, for example, is a consumer that can display an
image. Programmatically speaking, an image producer is an object of a class that
implements the ImageProducer interface. A consumer is an object of a class that
implements ImageConsumer. These protocols dictate the necessary methods for obtaining
and using image pixel data.

By creating your own image producer object, you can filter that pixel data as requested
by an image consumer. The filtered image is formed offscreen as explained in the
preceding section, and it is displayed in the usual way.

The AWT image package provides ready-to-use filters. For example, the CropImageFilter
class is useful for loading portions of large graphics files. To use this filter, first import
the AWT image package at the top of the source code file:

import java.awt.image.*;

Load the image file by calling getImage() as demonstrated by this chapter's ShowPic
applet:

Image gifPic = getImage(getDocumentBase(), "filename.gif");

To insert a filter into the works, obtain the image's producer by calling getSource():

ImageProducer picSource = gifPic.getSource();

This provides the means to tap into the image's source of pixels. To modify those pixels,
create a filter object, in this case, using the supplied CropImageFilter class:

CropImageFilter picFilter = new CropImageFilter(0, 0, 50, 50);

The arguments specify the coordinates of the portion of the image to use. Finally, create
an offscreen image using a new object of the FilteredImageSource class, which takes two
arguments — the image producer and filter objects:

pic = createImage(new FilteredImageSource(picSource, picFilter));

This assumes that pic is an object of the Image class, probably declared as an instance
variable in an extended Applet or JApplet class. When the image is loaded via the
specified producer, the filter object filters the image's pixels. In this example, the filter
restricts loading pixels to those that fall within the defined coordinates. Display the
filtered offscreen image in the usual way. For example, paint() might execute the
following statement:

g.drawImage(pic, 0, 0, this);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

466

As a more sophisticated example, Listing 23-6 shows how to extend an existing filter
class to create your own filters. The applet is similar to the ShowPic sample — I used a
copy of that program as a starting place — but it adds a new class and additional code to
convert a color image to a gray-scale picture. This is done by filtering each pixel using
the Color class's hue, saturation, and brightness methods. Figure 23-7 shows the
program's display of a clown in black and white. Load this file (Clown.gif in the Filter
subdirectory) into your browser or other GIF viewer to see the image in its original colors.

insert fg2307.jpg

Figure 23-7
The Filter applet displays a color GIF image converted to a gray-scale image.

Listing 23-6
Filter.java
001: import java.applet.*;
002: import java.awt.*;
003: import java.awt.image.*;
004:
005: //==
006: // BWFilter (black and white filter) class
007: //==
008:
009: class BWFilter extends RGBImageFilter {
010:
011: // Constructor
012: public BWFilter() {
013: canFilterIndexColorModel = true;
014: }
015:
016: // Return rgb color converted to shade of gray
017: public int filterRGB(int x, int y, int rgb) {
018: // Reduce rgb to hue, saturation, brightness elements
019: Color c = new Color(rgb);
020: float[] hsbvals = Color.RGBtoHSB(c.getRed(), c.getGreen(),
021: c.getBlue(), null);
022: // Return new color value of same brightness but
023: // with hue and saturation set to zero
024: return Color.HSBtoRGB(0.0f, 0.0f, hsbvals[2]);
025: }
026: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

467

027:
028: //==
029: // Applet class
030: //==
031:
032: public class Filter extends Applet
033: implements Runnable {
034:
035: // Instance variables
036: Image pic; // GIF image producer
037: int picID; // Arbitrary image ID
038: MediaTracker tracker; // Tracks loading of image
039: Thread loadingThread; // Thread for loading image
040: String filename = "Clown.gif"; // Filename
041: boolean imageReady = false; // Offscreen image flag
042: Image bwPic; // Offscreen image object
043:
044: // Initialize applet
045: public void init() {
046: // Size applet window
047: resize(320, 200);
048: // Create MediaTracker object
049: tracker = new MediaTracker(this);
050: // Start image loading
051: pic = getImage(getDocumentBase(), filename);
052: picID = 0;
053: tracker.addImage(pic, picID);
054: // Create thread to monitor image loading
055: loadingThread = new Thread(this);
056: loadingThread.start();
057: }
058:
059: // Run loading thread
060: // Allows other processes to run while loading
061: // the image data
062: public void run() {
063: try {
064: tracker.waitForID(picID);
065: if (tracker.checkID(picID, true)) {
066: // Create offscreen image using loaded GIF
067: // file filtered by our BWFilter class
068: ImageProducer picSource = pic.getSource();
069: BWFilter bwFilter = new BWFilter();
070: bwPic = createImage(new
071: FilteredImageSource(picSource, bwFilter));
072: imageReady = true;
073: }
074: } catch (InterruptedException ie) {
075: return;
076: }
077: repaint(); // Cause paint() to draw loaded image

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

468

078: }
079:
080: // Paint window contents
081: // Displays loading or error message until
082: // image is ready, then shows image
083: public void paint(Graphics g) {
084: if (tracker.isErrorID(picID))
085: g.drawString("Error loading " + filename, 10, 20);
086: else if (tracker.checkID(picID) && imageReady)
087: g.drawImage(bwPic, 0, 0, this); // Show offscreen image
088: else
089: g.drawString("Loading " + filename, 10, 20);
090: }
091: }

BWFilter extends an existing filter class, RGBImageFilter, in the awt.image package.
This provides a filter that can modify individual pixels of an Image object. For faster
results, the extended class's constructor sets the following flag true:

canFilterIndexColorModel = true;

This obscurely named flag, when true, indicates that the filterRGB() method uses only its
rgb color parameter and ignores its x and y integer coordinate values. This way, pixels of
the same color need to be filtered only once each. If you do not set the flag true, every
pixel of the image is sent to filterRGB() for filtering. Needless to say, this might be a
lengthy process, so unless you must examine every pixel, it's best to set the
canFilterIndexColorModel flag true in your filter class's constructor.

Implement the filterRGB() method to return its rgb parameter modified however you
wish. In this case, I use the Color class to construct gray-scale pixels. To do that, the
program creates a Color object using the rgb object:

Color c = new Color(rgb);

Next, the program obtains an array of hue, saturation, and brightness floating point values
by calling Color.RGBtoHSB():

float[] hsbvals = Color.RGBtoHSB(c.getRed(), c.getGreen(),
 c.getBlue(), null);

It is now a simple matter to create the equivalent gray-scale pixel for any color. The final
statement in the filterRGB() method returns an integer value with the hue and saturation
levels set to zero and the brightness unchanged:

return Color.HSBtoRGB(0.0f, 0.0f, hsbvals[2]);

To display the filtered image, the rest of the program uses code similar to that in the
ShowPic program. Two new variables, however, are needed:

boolean imageReady = false;
Image bwPic;

The boolean flag indicates when the filtered image is ready for display. The Image object
represents the offscreen surface used to form that image.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

469

The image file is loaded using a separate thread. (See the ShowPic sample in this chapter
for a discussion of this code.) However, the run() method adds new statements to create
the filtered image. The following statements obtain an ImageProducer object for the
original color GIF image and create an object of our BWFilter class:

ImageProducer picSource = pic.getSource();
BWFilter bwFilter = new BWFilter();
bwPic = createImage(new
 FilteredImageSource(picSource, bwFilter));
imageReady = true;

These two objects are passed to createImage() to construct an offscreen image. That
image's pixels are filtered by running them through filterRGB(). Finally, the imageReady
flag is set to true so that paint() can display the modified image.

Tip

The Filter applet holds both the original color image and its filtered gray-
scale offscreen image in memory. To eliminate the original image, which
you might do to conserve memory, set that Image object (pic in the
sample code) to null. The object is eventually disposed if necessary during
the next garbage collection.

ImageIcon
If you are willing to move up from AWT to Swing components, displaying image files is
a lot easier. Simply use the IconImage class to load the image. To display it, add the icon
object to another component such as JLabel. You'll probably also want to use JScrollPane
to add scrollbars to the window. With this technique, there is no need to use
MediaTracker because IconImage does that for you. What's more, you can use this
approach to load and display GIF, JPEG, and the relatively new PNG image graphics
files.

Listing 23-7, SwingPic.java, shows the fundamental techniques needed for displaying
image files using Swing. Figure 23-8 shows the program in action — that's a picture of
Earth taken during the Apollo 17 space flight to the moon, December 7, 1972. (Picture
source: Nasa, http://spaceflight.nasa.gov/gallery/).

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

470

insert fg2308.jpg

Figure 23-8
Using Swing's ImageIcon simplifies loading and displaying image files.

Listing 23-7
SwingPic.java
001: import javax.swing.*;
002: import java.awt.*;
003: import java.awt.event.*;
004:
005: public class SwingPic extends JFrame {
006:
007: // Picture filename
008: protected String filename = "AS17–148–22721.jpg";
009: protected ImageIcon image;
...
027: // Load image from file
028: image = new ImageIcon(filename);
029: int height = image.getIconHeight();
030: int width = image.getIconWidth();
031:
032: // Create a label to hold the image as an icon
033: JLabel labeledPic = new JLabel(image, JLabel.CENTER);
034: labeledPic.setText(filename);
035:
036: // Create a scroller to hold the labeled image
037: JScrollPane scroller = new JScrollPane(labeledPic);
038: scroller.setPreferredSize(new Dimension(height, width));
039:
040: // Add the scroller to the frame's content layer
041: Container content = getContentPane();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

471

042: content.add(scroller);
043: setSize(width, height); // Sets window's initial size
044: }
045:
046: public static void main(String[] args) {
047: SwingPic app = new SwingPic();
048: app.setTitle("Swing Picture Demonstration");
049: app.show();
050: }
051: }

The program is straightforward. Lines 028-030 load the image from disk and obtain its
height and width, two values used in sizing the window and scroll bar panes. You can't
add an IconImage object directly to a top-level container's content pane. Instead, you
must attach the image to another component such as JLabel as shown at lines 033-034.
Omit the call to setText() if you want to display only the image with no label.

Lines 037-038 create a JScrollPane object, using the JLabel component and its picture to
construct scroller. That object is then added to the frame's content pane (line 042). When
using this technique to display images, there's no need to write a paint() method because
the component takes care of displaying and updating the image as needed.

Animation Threads
I end this chapter with a sample applet that can animate a series of bitmap images. The
program is an AWT applet, but the same methods can be used with Swing's JApplet class.
Figure 23-9 shows the program's display, which, of course, is not animated on this page.
(Wouldn't that be a neat trick?)

insert fg2309.jpg

Figure 23-9
The Animation demo displays a series of bitmap images in a separate thread.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

472

Listing 23-8, Animation.java, shows the sample applet's source code. The program
follows standard Java techniques for loading a series of images using a separate thread so
that the loading process doesn't interfere with the browser's other operations. The
threaded code is what makes the program seem complex, but the actual animation is a
simple process of merely displaying each image in succession. However, that too must be
done in a thread so the animation does not grab all processor cycles.

Listing 23-8
Animation.java
001: import java.applet.*;
002: import java.awt.*;
003:
004: public class Animation extends Applet
005: implements Runnable {
006:
007: // Thread for loading and displaying images
008: Thread animThread = null;
009:
010: private final int NUM_IMAGES = 10; // Number of image files
011: private Image images[]; // Array of images
012: private int currImage; // Index of current image
013: private int imgWidth = 0; // Width of all images
014: private int imgHeight = 0; // Height of all images
015: private boolean allLoaded = false; // true = all loaded
016: private MediaTracker tracker; // Tracks image loading
017: private int width, height; // Applet width and height
018:
019: // Initialize applet
020: public void init() {
021: width = 320;
022: height = 240;
023: resize(width, height);
024: // Create MediaTracker object. The string is
025: // for creating the image filenames.
026: tracker = new MediaTracker(this);
027: String strImage;
028: // Load all images. Method getImage() returns immediately
029: // and all images are NOT actually loaded into memory
030: // by this loop.
031: images = new Image[NUM_IMAGES]; // Create image array
032: for (int i = 1; i <= NUM_IMAGES; i++) {
033: strImage = "images/img00" + ((i < 10) ? "0" : "")
034: + i + ".gif";
035: images[i–1] = getImage(getDocumentBase(),
036: strImage);
037: tracker.addImage(images[i–1], 0);
038: }
039: }
040:
041: // Paint window contents

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

473

042: public void paint(Graphics g)
043: {
044: // Draw current image
045: if (allLoaded) {
046: g.drawImage(images[currImage],
047: (width – imgWidth) / 2,
048: (height – imgHeight) / 2, null);
049: }
050: }
051:
052: // Create and start animation thread
053: public void start() {
054: if (animThread == null) {
055: animThread = new Thread(this);
056: animThread.start();
057: }
058: }
059:
060: // Run image load and display thread
061: public void run() {
062: // Load images if not already done
063: if (!allLoaded) {
064: showStatus("Loading images...");
065: // Wait for images to be loaded
066: // Other processes continue to run normally
067: try {
068: tracker.waitForAll();
069: }
070: catch (InterruptedException e) {
071: stop(); // Stop thread if interrupted
072: return; // Abort loading process
073: }
074: // If all images are not loaded by this point,
075: // something is wrong and we display an error
076: // message.
077: if (tracker.isErrorAny()) {
078: showStatus("Error loading images!");
079: stop();
080: return;
081: }
082:
083: // All images are loaded. Set the loaded flag
084: // and prepare image size variables
085: allLoaded = true;
086: imgWidth = images[0].getWidth(this);
087: imgHeight = images[0].getHeight(this);
088: }
089:
090: // Loop endlessly so animation repeats
091: // User ends loop by leaving the page or exiting
092: // the browser.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

474

093: showStatus("Displaying animation");
094: while (true) {
095: try {
096: repaint();
097: currImage++;
098: if (currImage == NUM_IMAGES)
099: currImage = 0;
100: Thread.sleep(50); // Controls animation speed
101: }
102: catch (InterruptedException e) {
103: stop();
104: }
105: } // end of while statement
106: } // end of run() method
107: }

Constant NUM_IMAGES indicates the number of image files, which are stored in the
Images subdirectory in the form img0001.gif. The applet also declares several instance
variables to control image loading and the display of individual bitmaps (see lines 008-
017). The image bitmaps are stored in an array of Image objects. Variable currImage
indicates which image from this array should be drawn next. A boolean variable,
allLoaded, is true after all images are loaded using a MediaTracker object as explained
earlier in this chapter.

That object, named tracker, greatly simplifies the process of loading multiple image files
using a separate thread. It also makes error detection easier. Method init() initializes the
program's instance variables and constructs the tracker object. Each image is loaded using
the Applet.getImage() method and is stored in the images array. Each image is added to
the tracker object by calling MediaTracker.addImage(). After the for loop ends (lines
032-038), the tracker is ready to begin loading the images from disk. It's important to
realize, however, that this process continues to execute in a separate thread, and the
images might not be ready for display until some time after init() ends.

Tip

If you need to modify an animation's bitmap data, use the image filtering
techniques described in this chapter, and then display the resulting
offscreen images instead of directly showing the image files.

The program's paint() method is simply written — a desirable characteristic in all
graphics programs because, if this method takes too long to complete, other processes
halt in their tracks while paint() updates the display. In this example, to keep paint() short
and fast, the method's if statement first checks the boolean flag allLoaded to determine
whether all images have been loaded and the animation is ready to begin:

if (allLoaded) {
 g.drawImage(images[currImage],
 (width – imgWidth) / 2,
 (height – imgHeight) / 2, null);
}

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

475

If the flag is true, Graphics.drawImage() displays the current image using some optional
calculations to reduce the image sizes. Notice that paint() draws only one image — it
would be a grievous error to use a loop in paint() to animate the display. That would
block other processes and cause the applet to perform badly. Always keep paint() simple,
and use threaded code for carrying out lengthy graphics operations.

Key elements toward that goal are the construction of a Thread object, created in the
applet's start() method:

animThread = new Thread(this);

That constructs the Thread object using a reference (this) to the applet object. As a result,
the thread looks for a run() method in the applet (see lines 061-106). The method is a
lengthy affair that demonstrates several techniques with broad application in threaded
programming. An initial if statement checks whether the images are already loaded, in
which case the method can proceed directly to its display statements. This might happen,
for example, if the user switches away and then back again to the applet.

If the images are not already loaded, a try statement calls the tracker's waitForAll()
method, which returns only after all monitored images — as specified by
MediaTracker.addImage() — are either loaded or an error is detected. However, if
another thread interrupts the process, waitForAll() throws an InterruptedException object,
caught in this statement:

try {
 tracker.waitForAll();
}
catch (InterruptedException e) {
 stop(); // Stop thread if interrupted
 return; // Abort loading process
}

After the try block ends normally, the images are either in memory, or an error has
occurred. To detect any problems, run() executes this code:

if (tracker.isErrorAny()) {
 showStatus("Error loading images!");
 stop();
 return;
}

Method isErrorAny() returns true if any errors were detected for any of the images —
even if only one file, for example, could not be found. In that case, showStatus() displays
a message in the browser, and the program kills the image-loading thread.

Finally, if all is well, the allLoaded flag is set to true so that paint() can begin displaying
images, and the image width and height variables are initialized using the first image
referenced at index 0 in the Image object array:

allLoaded = true;
imgWidth = images[0].getWidth(this);
imgHeight = images[0].getHeight(this);

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

476

The purpose of this as an argument passed to getWidth() and getHeight() might seem
obscure. These methods require an image observer, an object of any class that
implements the ImageObserver interface. This interface specifies that the implementing
class should provide an imageUpdate() method, called when image data is ready for
display. Through this protocol, the image consumer (such as a component or the applet)
receives its image data via the image producer.

Following these preliminary steps — all of which are concerned with preparing the
animation's multiple images — the program is ready to begin displaying each image in
sequence. This is done inside run() using a so-called "do-forever" while loop that
continues until another thread interrupts this one, or until the applet ends. To display each
image, a try block executes the statements

repaint();
currImage++;
if (currImage == NUM_IMAGES)
 currImage = 0;
Thread.sleep(50);

This shows the proper way to perform potentially time-consuming graphics operations,
which must not be allowed to inhibit other processes. Calling repaint() causes paint() to
display a single image as specified by the currentImage index. So that the animation
loops continuously, the index is rotated through the values 0 to NUM_IMAGES – 1.
Finally, to give other processes time to run — and also to control the speed of the
animation — a call to Thread.sleep() pauses in a thread-friendly way for 50 milliseconds
between each image.

Summary
* Use Graphics class methods to draw outlined and filled shapes, paint text, display

images, and show other kinds of graphics.

* Most often, you commonly use the Graphics context object passed to method
paint(). However, you may create your own Graphics context objects by calling
Component.getGraphics().

* Loading and displaying image files requires careful threaded programming.
Simply loading and displaying a GIF or JPEG image can potentially block other
processes. A well-written applet or application must not allow that to happen.

* Use the Color class to create color values of red, green, and blue components. The
class can also specify colors as hue, saturation, and brightness levels.

* Use the Font class to select a font family, size, and style for use with Graphics
class methods that display text. Use the FontMetrics class to obtain spacing
information for selected fonts.

* The Image class, which represents the source or producer of a bitmap image, is
typically used in conjunction with the MediaTracker class to load image files.
This chapter explains the threaded code needed for using these classes to
smoothly load and display bitmap images.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

477

* Swing's ImageIcon class greatly simplifies image loading and display, and it also
recognizes the relatively new PNG graphics file format. ImageIcon uses
MediaTracker internally.

* You may prepare an offscreen image and draw to it by calling Graphics class
methods. The image is displayed using the same techniques for displaying an
image loaded from a file.

* By obtaining an image's producer and creating an offscreen image, you can plug
in an image filter that modifies the image's pixels. This chapter explains how to
program a filter that converts a color GIF image to a gray-scale, black-and-white
picture.

* Animating multiple images requires careful, threaded programming. The
animation techniques in this chapter work for AWT and Swing applets and
applications.

Chapter 24 Input and Output Techniques
The java.io package provides a rich set of input and output tools that you can use for
reading and writing binary and character data. This chapter introduces several of the
java.io package's classes and lists several sample programs that demonstrate how to read
and write data interactively using file streams.

Note

For security reasons, applets cannot use the file I/O techniques described
in this chapter. Only Java stand-alone programs are permitted to read and
write disk files.

In This Chapter

* Standard input and output files

* Programming with the File class

* Using file streams and buffers

* Input and output of typed data

* Random-access file techniques

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

478

Standard Input and Output
Java implements I/O using the concept of streams. Data objects in an I/O stream flow like
boats down a narrow river, one after the other. To use a stream, you first need to open it.
After receiving the last data object, the program should close the stream in order to
release any reserved system resources such as file buffers and associated file descriptor
variables.

Java has two basic kinds of streams — byte streams and character streams. Byte streams
are more general and can be used to read and write any kind of information. Character
streams are, of course, used only with character data.

Java also provides standard input and output classes, associated usually with the
keyboard and text display, but also redirectable to use other kinds of files. Java calls its
standard output streams PrintStream and PrintWriter, and the input counterparts,
InputStream and InputStreamReader. Most I/O classes have similarly related input and
output classes.

Tip

In Java I/O terms, the words "Reader" and "Writer" in a class name refer
to streams intended for use with character data.

Originally, Java did not have character streams, and for that reason, its standard I/O
classes are byte streams. Changing this would break too many programs, and so we are
stuck with the problem. As a result, standard input and output methods usually require
type-cast expressions to convert from binary to character data. Java's standard I/O objects,
defined in the System class, are

public static PrintStream err;
public static InputStream in;
public static PrintStream out;

Use these static objects in reference to System, as in the following statement, which
prints a message on the terminal. Similar examples are strewn throughout this book's
listings:

System.out.println("Please enter your password:");

Call print() similarly if you don't want to start a new line. Another PrintStream object,
System.err, represents the standard error output file. This file may not be redirected, and
it is therefore guaranteed to send its output to the display. Use it to report error messages
such as

System.err.println("Error: System has lost its marbles.");

Inputting data takes a little more work. The classic approach requires two variables:

StringBuffer str = new StringBuffer();
char ch;

Follow that with a while loop to read characters from the standard input (the keyboard,
unless input has been redirected), and append them to the StringBuffer object:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

479

while ((ch = (char)System.in.read()) != '\n')
 str.append(ch);

As mentioned, the type-cast expression, (char), is needed because the standard input is a
byte stream. Sun and most Java programmers now suggest not using that classic approach
in new code. Instead, the recommended technique uses a BufferedReader object, along
with an InputStreamReader object, to read strings entered at the keyboard. Listing 24-1,
ReadLine.java, demonstrates the new and improved way to input character data.

Listing 24-1
ReadLine.java
001: import java.io.*;
002:
003: public class ReadLine {
004:
005: // Input a string
006: public static String readLine()
007: throws IOException {
008: BufferedReader br =
009: new BufferedReader(new InputStreamReader(System.in));
010: return br.readLine();
011: }
012:
013: // Prompt for and input a string
014: public static String readLine(String prompt)
015: throws IOException {
016: System.out.print(prompt);
017: return readLine();
018: }
019:
020: // Main program
021: public static void main(String args[])
022: throws IOException {
023: System.out.println("Enter strings when prompted.");
024: System.out.print("Enter your first name: ");
025: String s1 = readLine();
026: String s2 = readLine("Enter your last name: ");
027: System.out.println("Your name: " + s1 + " " + s2);
028: }
029: }

The first step in using Java I/O is to import the java.io package, as shown in the listing at
line 001. In the program's ReadLine class, the BufferedReader class creates an input
character stream that buffers characters as they are entered. Calling readLine() for that
object returns characters entered until the user presses Enter or Return (in other words,
until a new-line symbol is detected).

Notice how InputStreamReader, a non-buffered input character string, is associated with
System.in. The two overloaded readLine() methods in the sample program provide

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

480

unprompted and prompted versions. The main program shows how to use these methods
— simply call them and assign their results to String variables.

Note

To save space in this chapter, instead of catching exceptions, some
methods simply throw them to their callers. For example, see lines 007
and 015 in Listing 24-1. For this reason, any I/O errors cause the program
to end. In your own programs, it is better to use try-catch blocks to handle
IOExceptions using the techniques outlined in Chapter 7, "Exception
Handling."

Files and Directories
A large part of I/O programming involves accessing files and directories, but these are
subjects not well covered in many Java sources. Following are notes and sample
programs that demonstrate the java.io package's File class, which is useful for obtaining
information about files, and also for listing directory contents.

The File Class
Java's File class soothes a lot of the pain that comes from writing system-independent I/O
code. Use File to create objects that represent files and directories in system-independent
ways. Keep in mind, however, that separator characters differ among operating systems.
For that reason, always use these File static declarations in place of explicit separators:

static String pathSeparator;
static char pathSeparatorChar;
static String separator;
static char separatorChar;

Each separator has String and char forms for convenience. The separator and
separatorChar objects represent the character used to separate directories in path names.
For example, Windows uses a backslash as the separator; Linux and UNIX use a forward
slash. The pathSeparator and pathSeparatorChar objects represent the character used in
multiple-entry directory lists. In Windows, a semicolon is the path separator. Linux and
UNIX use a colon.

Note

Among supported platforms, only Windows prefaces path names with
drive letters such as C: and D:. Also, Windows filenames are not case
sensitive, as they are in Linux and UNIX. Despite the File class's attempt
to generalize file naming conventions across platforms, accommodating
such differences still takes careful programming.

Create a File object using one of the class's three constructors. For example, the
following statement creates a File object that refers to the Readme.txt file in the
\Wizbang directory:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

481

File fobj = new File("/Wizbang/Readme.txt");

For better cross-platform support, you may want to insert the aforementioned constants
into a filename rather than type the explicit slashes used for space reasons in this chapter.
Although this takes some extra work, the results work correctly on all supported
platforms. For example, using a String object, the following statements construct a
pathname and then use the string to create a File object:

String s = File.separator + "Wizbang"
 + File.separator + "Readme.txt";
File fobj = new File(s);

You may also construct a File object that represents a directory name using a statement
such as

File dobj = new File("/Wizbang");

It doesn't matter whether the file or the directory actually exist. A File object may refer to
an existing or nonexistent file, directory, or path. The File object is just an abstraction of
a file, it neither creates a real file nor does it hold any file data.

Another way to construct a File object is to specify a path and filename separately:

File fobj = new File("/Wizbang", "Readme.txt");

This File construction technique is useful when the program stores pathnames and
filenames in separate String variables. The proper separator is automatically inserted
between the path and file strings. Finally, you may specify a path using another File
object plus a filename. This fragment creates two File objects:

File dobj = new File("/Wizbang");
File fobj = new File(dobj, "Readme.txt");

The first object refers to the path string @@dp/Wizbang@@dp. The second is created
using the first object as the path and a string as the filename.

Note

An absolute path is one that completely specifies a path, as opposed to a
relative path that relates to another directory. In Linux, for example, an
absolute path begins with a forward slash as in @@dp/usr/bin@@dp. In
Windows, an absolute path looks like this:
@@dpC:\Downloads\Java@@dp. Relative paths might use double
periods @@dp..@@dp to go up one level in a directory structure. A
relative path in Linux, for instance, might be written as
@@dp../../include@@dp. A similar path in Windows uses forward slashes
as in @@dp..\..\include@@dp.

In addition to its constructors, the File class provides several useful methods for
determining various facts about a file, directory, or path. Be aware that some of these
methods — mkdir(), for example — can make changes to your file system's directory
structures. Selected File public methods include the following:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

482

* String getName() — Returns the name of the file or directory.

* String getPath() — Returns the full path name.

* String getAbsolutePath() — Returns the current absolute path, or if the File object
does not represent an absolute path, returns the concatenation of the current
directory, a separator character, and the object's relative path or filename.

* String getParent() — Returns the directory of the file represented by this File
object. This is the pathname up to the separator character before the filename. If
the path has no such separator character, this method returns null.

* boolean exists() — Returns true if the file or directory exists.

* boolean canWrite() — Returns true if a program can write to the file — for
example, if it is not marked read -only.

* boolean canRead() — Returns true if a program can read from the file. (This
method returns false if the file is a directory.)

* boolean isFile() — Returns true if the File object represents a disk file.

* boolean isDirectory() — Returns true if the File object represents a directory
name.

* native boolean isAbsolute() — Returns true if the represented path is absolute (no t
relative to another path).

* long lastModified() — Returns the date and time of the file's most recent
modification or creation. Use the Date class to convert the returned value to a
useable form.

* long length() — Returns the length of the file in bytes.

* boolean mkdir() — Creates the directory represented by this File object. Any
outer nested directories in the path must already exist (see also mkdirs()). Returns
true if the directory was successfully created.

* boolean renameTo(File dest) — Renames the file represented by this File object
to the name represented by the dest File object. Returns true if the filename
change was successful.

* boolean mkdirs() — Works the same as mkdir(), but also creates any outer nested
directories in the path. Returns true if all directories were successfully created.

* String[] list() — Returns an array of String objects representing the filenames in
the directory referenced by this File object.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

483

* String[] list(FilenameFilter filter) — Works the same as list(), but returns only
filenames matching the specified filter (for an example, see the "File Filters"
section in this chapter).

* boolean delete() — Deletes the file or directory referenced by this File object.
Returns true if the deletion was completed successfully.

File and Directory Programming
Listing 24-2, Directory.java, demonstrates how to use the File class to list the names of
files in a specified directory path. To save a little space on the page, I cut out the
readLine() methods at lines 002-019 duplicated from Listing 24-1.

Listing 24-2
Directory.java
001: import java.io.*;
002:
003: public class Directory {
...
020: // Construct File object for directory path
021: public static File getFileForPath(String path)
022: throws IOException {
023: File dir = new File(path);
024: if (!dir.isDirectory())
025: throw new IOException("Not a directory");
026: return dir;
027: }
028:
029: // Main program method
030: public static void main(String args[]) {
031:
032: String path;
033:
034: try {
035:
036: // Get pathname from command line or prompt user
037: if (args.length > 0)
038: path = args[0];
039: else
040: path = readLine("Path name? ");
041:
042: // List directory
043: File dir = getFileForPath(path);
044: String[] filenames = dir.list();
045: for (int i = 0; i < filenames.length; i++)
046: System.out.println(filenames[i]);
047: } catch (IOException e) { // Trap exception
048: System.err.println(e.toString()); // Display error
049: }
050: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

484

051: }

Compile and run the program, and then enter a path name as a command-line argument,
or in response to the program's prompt (in Windows, type a backslash as the path
separator):

javac Directory.java
java Directory /mnt/floppy
...
java Directory
Path name? /usr/tswan

After obtaining a path name, the program calls the local method getFileForPath(). This
method converts the entered pathname string into a File object, created with the statement

File dir = new File(path);

The method then checks whether this object represents a directory. If the File.isDirectory()
method returns false, the local method throws an object of the IOException class (see line
025). This is a good example of how file I/O programming uses exceptions to report not
merely errors, but also exceptional conditions — in this case, entering the name of a file
when a directory is required. To see the result of this programming, enter a filename such
as

java Directory Directory.class
java.io.IOException: Not a directory

File Information
Listing 24-3, FileInfo.java, shows another way to use the File class. Compile and run the
program, but this time, at the command line or when prompted, enter the name of a file.
To test the program's exception handling, try entering nonexistent pathnames. Only if you
enter the name of an existing file does the program report information such as the file's
name, size, and last-modified date.

Listing 24-3
FileInfo.java
001: import java.io.*;
002: import java.util.Date;
003:
004: public class FileInfo {
...
021: // Construct File object for named file
022: public static File getFileForFilename(String filename)
023: throws IOException {
024: File fi = new File(filename);
025: // Do not move the following statements;
026: // order is critical
027: if (!fi.exists())
028: throw new IOException("File not found");
029: if (!fi.isFile())
030: throw new IOException("Not a file");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

485

031: return fi;
032: }
033:
034: // Show a labeled string
035: public static void showLabel(String label, String s) {
036: System.out.print(label);
037: System.out.println(s);
038: }
039:
040: // Display information about file fi
041: public static void showInformation(File fi) {
042: showLabel("Path = ", fi.getPath());
043: showLabel("Filename = ", fi.getName());
044: showLabel("Length = ",
045: new Long(fi.length()).toString());
046: showLabel("Readable = ",
047: new Boolean(fi.canRead()).toString());
048: showLabel("Writable = ",
049: new Boolean(fi.canWrite()).toString());
050: showLabel("Modified = ",
051: new Date(fi.lastModified()).toString());
052: }
053:
054: // Main program method
055: public static void main(String args[]) {
056: String filename;
057: try {
058: // Get pathname from command line or prompt user
059: if (args.length > 0)
060: filename = args[0];
061: else
062: filename = readLine("File name? ");
063: File fi = getFileForFilename(filename);
064: showInformation(fi);
065: } catch (IOException e) { // Trap exception
066: System.err.println(e.toString()); // Display error
067: }
068: }
069: }

Line 024 creates a File object for the specified filename. After determining that the file
both exists and is a file, and not a directory name, method showInformation() at lines
041-052 calls various File methods to display facts about the file.

File Filters
A filename filter uses wildcards to represent characters that match any pattern. For
example, the filter *.* is typically used to represent any filename. The filter *.txt
represents all files ending with .txt. The filter *.00? represents all files with any name, a
period, two zero characters, and any final character.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

486

I could find only scant documentation on how to use filename filters with the File class,
but with a little experimentation, I was able to figure out most of the particulars. The key
is to create your own class that implements the FilenameFilter interface, which specifies
the single method:

boolean accept(File dir, String name);

The method returns true if the designated file, directory, or path should be included in the
File.list() method's return value. Return false to exclude a file, directory, or path. Listing
24-4, FilterDir.java, demonstrates how to implement the FilenameFilter interface to list
only the subdirectories in a given path. The listing is a modified copy of the
Directory.java program in this chapter. Only the new statements are listed here (but the
full listing is, of course, on the CD-ROM).

Listing 24-4
FilterDir.java
001: import java.io.*;
002:
003: // File filter class
004: class FilterClass implements FilenameFilter {
005: public boolean accept(File dir, String name) {
006: File f = new File(dir, name);
007: if (f.isDirectory())
008: return true;
009: else
010: return false;
011: }
012: }
013:
014: public class FilterDir {
...
031: // Construct File object for directory path
032: public static File getFileForPath(String path)
033: throws IOException {
034: File dir = new File(path);
035: if (!dir.isDirectory())
036: throw new IOException("Not a directory");
037: return dir;
038: }
039:
040: // Main program method
041: public static void main(String args[]) {
042: String path;
043: try {
044: // Get pathname from command line or prompt user
045: if (args.length > 0)
046: path = args[0];
047: else
048: path = readLine("Path name? ");
049: File dir = getFileForPath(path);
050: String[] filenames = dir.list(new FilterClass());

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

487

051: for (int i = 0; i < filenames.length; i++)
052: System.out.println("<DIR> " + filenames[i]);
053: } catch (IOException e) { // Trap exception
054: System.err.println(e.toString()); // Display error
055: }
056: }
057: }

The program's FilterClass implements the FilenameFilter interface, which declares the
method:

public boolean accept(File dir, String name);

The File parameter specifies the absolute or relative pathname, or directory, of the
indicated file. The String parameter is the candidate file or directory name to be returned
by File.list(). Only if accept() returns true is the file accepted for listing. In this case, the
program simply checks whether the name String is a directory name, and in that way the
program filters out all non-directories.

Note

The File.list() method does not return the current (.) or outer (..) directory
names, and you don't need to write code to filter these names out.

File Streams and Buffers
A file stream is simply a sequential source of data bytes that flow from one location to
another. An object-oriented file stream is a class that represents an abstraction of this
concept. As the examples in the following sections show, file streams are often associated
with disk files.

The FileInputStream Class
The FileInputStream class provides methods for accessing file stream data. You can
construct FileInputStream objects in three ways. Pass a string representing the filename
or path:

FileInputStream fin =
 new FileInputStream("/Wizbang/Accounts.dat");

You can also pass a File object to the constructor — useful for checking the status of the
file before creating the stream. For example, the following code fragment throws an
exception if the indicated file does not exist:

File fi = new File("/Wizbang/Accounts.dat");
if (!fi.exists())
 throw IOException("Not a file");
FileInputStream fin = new FileInputStream(fi);

A third way to construct a FileInputStream object is to pass it a FileDescriptor object,
which serves as an interface to a file handle — a term that typically refers to the
operating system's file resource. FileDescriptor is necessarily system dependent and is

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

488

rarely used in I/O programming, but you might call the FileInputStream class's getFD()
method to obtain the FileDescriptor object for an existing stream. You can then use this
object to construct another stream — perhaps to clone a stream so that you can reference
the same file data using two objects.

Selected FileInputStream public and protected methods are as follows:

* int read() — Reads a single byte from the stream.

* int read(byte b[]) — Reads b.length bytes from the file into the byte array.
Returns the number of bytes read, or –1 if the end of the file is reached. This
method does not construct its array — you must do that before calling read().

* int read(byte b[], int off, int len) — Similar to the preceding method, but ignores
the array length. Deposits bytes from the stream starting at b[off] and reading up
to len bytes or to the end of the file.

* long skip(long n) — Throws away the specified number of bytes from the stream,
thus skipping from the current file position to a new position n bytes away.
Returns the number of bytes skipped.

* int available() — Returns the number of bytes that can be read from the stream
without blocking. This value is not necessarily the same as the file's size.

* void close() — Closes the input stream. It is always optional to close file streams,
but this is usually a good idea because it frees system resources.

* FileDescriptor getFD() — Returns the system-dependent file descriptor object for
this input stream. You can use this object to clone a file input stream by passing
the method's return value to the FileInputStream constructor.

* void finalize() — This method is protected, and you cannot call it from a program.
However, I list it here as a rare example of a finalize() method with a useful
purpose — in this case, closing a file if an unreferenced FileInputStream object is
deleted by the garbage collector.

The FileOutputStream Class
As counterpoint to the FileInputStream class, FileOutputStream represents a destination
for a file stream of data bytes. Construct a FileOutputStream object using similar
techniques described for FileInputStream. The public methods that differ from those in
FileInputStream are as follows:

* void write(int b) — Writes a single byte, b, to the output stream. The data is
written to disk immediately.

* void write(byte b[]) — Writes an entire array of bytes to the output stream.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

489

* void write(byte b[], int off, int len) — Writes len bytes starting with b[off] to the
output stream.

File Programming
Listing 24-5, CopyFile.java, demonstrates how to use the FileInputStream and
FileOutputStream classes to copy a disk file. Because the program uses low-level data
streams, it can copy a file of any type.

Listing 24-5
CopyFile.java
001: import java.io.*;
002:
003: public class CopyFile {
...
020: // Construct File object for named file
021: public static File getFileForFilename(
022: String filename, boolean checkExistence)
023: throws IOException {
024: File fi = new File(filename);
025: if (checkExistence) {
026: // Do not move the following statements;
027: // order is critical
028: if (!fi.exists())
029: throw new IOException(fi.getName() + " not found");
030: if (!fi.isFile())
031: throw new IOException(fi.getName() + " is not a file");
032: }
033: return fi;
034: }
035:
036: // Returns true if user answers yes to prompt
037: public static boolean yes(String prompt)
038: throws IOException {
039: System.out.print(prompt);
040: char ch = (char)System.in.read();
041: if (ch == 'y' || ch == 'Y') {
042: return true;
043: }
044: return false;
045: }
046:
047: // Copy an old file to a new one
048: // Overwrites or creates the new file
049: public static void copy(File fileOld, File fileNew)
050: throws IOException {
051: FileInputStream fin = new FileInputStream(fileOld);
052: FileOutputStream fout = new FileOutputStream(fileNew);
053: System.out.println("Copying...");
054: int b = fin.read();

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

490

055: while (b != –1) {
056: fout.write(b);
057: b = fin.read();
058: }
059: System.out.println("Finished");
060: }
061:
062: // Main program method
063: public static void main(String args[]) {
064: String fileOldName, fileNewName;
065: File fileOld, fileNew;
066: try {
067: if (args.length >= 2) {
068: fileOldName = args[0];
069: fileNewName = args[1];
070: } else {
071: fileOldName = readLine("Copy what file? ");
072: fileNewName = readLine("To what file? ");
073: }
074: fileOld = getFileForFilename(fileOldName, true);
075: fileNew = getFileForFilename(fileNewName, false);
076: if (fileNew.isDirectory())
077: throw new IOException(
078: fileNew.getName() + " is a directory");
079: if (fileNew.exists()) {
080: if (!yes("Overwrite file " + fileNew.getName() + "? "))
081: throw new IOException("File not copied");
082: } else {
083: if (!yes("Create new " + fileNew.getPath() + "? "))
084: throw new IOException("File not copied");
085: }
086: copy(fileOld, fileNew);
087: } catch (IOException e) { // Trap exception
088: System.err.println(e.toString()); // Display error
089: }
090: }
091: }

Most of the sample program's code is concerned with prompting for filenames or
obtaining them from the command line, checking that the source file exists, and asking
for permission to overwrite an existing destination file, or to create a new one. File
copying takes place in method copy(), which creates FileInputStream and
FileOutputStream objects:

FileInputStream fin = new FileInputStream(fileOld);
FileOutputStream fout = new FileOutputStream(fileNew);

That creates the two stream objects using the File objects passed to copy(). At this point
in the program, the files have been verified, and copying proceeds immediately using a
while loop:

int b = fin.read();
while (b != –1) {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

491

 fout.write(b);
 b = fin.read();
}

The first statement reads the first source-file byte. While that byte is not –1, the loop
writes it to the destination file, and then reads the next byte. Because read() returns a 32-
bit int value, only the least significant 8 bits represent valid data, leaving –1 (hexadecimal
0xffffffff) available as an end -of-file flag. As a side benefit, the copy() method and other
statements in the program demonstrate how exception handling keeps the code simple
while trapping all possible errors.

The BufferedInputStream Class
Plain file streams are adequate for small data files, but to maintain good performance,
you'll want to use extensions of the basic file stream classes that add buffered I/O. A
buffer is simply a block of memory that collects file stream data on its way to and from
memory and disk. Because entire blocks of data are read and written at a time, disk
accesses are kept to a minimum, which usually results in a great speed improvement. The
downside of using buffers is that, if the computer is shut down prematurely, a greater
amount of data is at risk. You can minimize this danger by flushing the file. (Output
classes provide a flush() method for this purpose.)

The BufferedInputStream class constructs buffered input file stream objects. To use the
class, you must first construct an unbuffered FileInputStream. Actually, you may use any
InputStream object, but in file I/O programming, it's more common to use the
FileInputStream class. For example, these statements construct and use a FileInputStream
object using a File object, fi:

FileInputStream fin = new FileInputStream(fi);
BufferedInputStream bin = new BufferedInputStream(fin);

The resulting unbuffered stream object (fin) is passed to the BufferedInputStream
constructor to create the buffered stream. You may optionally pass a size argument to the
constructor to specify a buffer of a certain length. The following statement constructs the
buffered input stream object using the file stream but increases the buffer size to 1024
bytes:

BufferedInputStream bin = new BufferedInputStream(fin, 1024);

Following are methods in the BufferedInputStream class that you can call:

* int read() — Reads a single byte from the input stream. Returns –1 if the end of
file is reached.

* int read(byte b[], int off, int len) — Reads len bytes and deposits them in the byte
array starting at b[off]. Returns the number of bytes actually read, or –1 if the end
of the file has been reached.

* long skip(long n) — Throws away n bytes from the input stream starting at the
current position. Returns the number of bytes actually skipped.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

492

* int available() — Returns the number of bytes that can be read from the input
stream without blocking. This value is not necessarily the same as the file size.

* void mark(int readlimit) — Sets a marker at the current position so that reset() can
return to this position. The parameter readLimit equals the number of bytes that
are permitted to be read before the mark becomes invalid.

* void reset() — Returns the file pointer to the position most recently recorded by
mark(). The default mark is –1, which represents no valid position. Calling reset()
without a preceding call to mark() throws an IOException error.

* boolean markSupported() — Returns true if mark() and reset() are supported by
the operating system. Although the standard Java implementation always returns
true for this method, a local installation may not support file marking, and it's a
good idea to call markSupported() before using mark() and reset().

Note

The mark() and reset() methods are typically used to remember the
current position and then to peek ahead to see what kind of data is coming
up. Calling reset() repositions the file to its marked location. A parser
might use these methods to look ahead for a specific character. It's
important to realize, however, that reading more bytes than passed to
mark() invalidates the mark and throws an exception if reset() is
subsequently called. An exception is also thrown if reset() is called without
a prior call to mark(). The two methods are not intended for skipping
around at will in a file; if you need that capability, see the
RandomAccessFile class described later in this chapter.

The BufferedOutputStream Class
The counterpart to the BufferedInputStream class is BufferedOutputStream. As with
BufferedInputStream, you can construct a BufferedOutputStream object two ways. Each
requires an existing OutputStream object, which in file I/O programming is typically an
object of the FileOutputStream class. For example, the following two statements
construct a FileOutputStream object using a File object, fi:

FileOutputStream fout = new FileOutputStream(fi);
BufferedOutputStream bout = new BufferedOutputStream(fout);

The resulting unbuffered output stream fout is passed to the BufferedOutputStream
constructor to create the buffered output object. You may optionally specify a buffer size
by passing an integer argument to the class constructor. The next statement creates a
buffered output stream object with a buffer size of 1024 bytes:

BufferedOutputStream bout =
 new BufferedOutputStream(fout, 1024);

The BufferedOutputStream class provides three public methods:

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

493

* void write(int b) — Writes a single byte to the output stream. Because the stream
is buffered, the data is not necessarily transferred to disk immediately.

* void write(byte b[], int off, int len) — Writes len bytes to the output stream
starting with b[off]. As with the other form of write(), the actual transfer of data to
disk might not occur immediately.

* void flush() — Flushes the current buffer, causing any data held in memory to be
written to disk immediately.

Typed Input and Output
The file I/O classes and methods presented so far blindly treat file data as no more than a
pool of bytes. Although that's an accurate low-level description for all files, their bits and
bytes are more interestingly viewed as typed -data values such as integers and characters.
For typed I/O, Java provides several useful classes described in the next sections.

The DataInputStream Class
The DataInputStream class can read data of any type from a file, using buffered or
unbuffered streams. The class's constructor requires an InputStream object:

DataInputStream(InputStream in);

By constructing a DataInputStream object, you connect it to any type of low-level input
stream object. This can be a file stream, or it can be a buffered file stream — the two
most common uses. In most cases, you'll probably want to use a buffered file stream.
Doing this takes three steps:

 1. Construct a file stream of the FileInputStream class.

 2. Construct a buffered file stream of the BufferedInputStream class using the object
from Step 1.

 3. Construct a DataInputStream object using the buffered stream from Step 2.

These steps build the data input stream in stages, starting with a plain unbuffered stream,
progressing to a buffered stream, and finishing with the typed data file stream object.
Here are the three steps in code:

FileInputStream fin = new FileInputStream(fi);
BufferedInputStream bin = new BufferedInputStream(fin);
DataInputStream din = new DataInputStream(bin);

The first statement constructs the unbuffered file stream object, fin, using a File class
object fi that represents the file's path name. The resulting file stream object is passed to
the BufferedInputStream constructor to create the buffered file object, bin. Finally, that
object is passed to the solitary DataInputStream constructor, creating the finished typed
data stream, din. That object is now ready for reading typed data from the file.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

494

Reading Text Files
Although the preceding steps are valid for most kinds of typed-file I/O, they are no longer
recommended for use with character data. For that, relatively newer classes such as
BufferedReader provide file streams that work correctly with Unicode characters.
(Remember that classes with "Reader" in their names are for use with character data.) To
demonstrate this class, Listing 24-6, ReadText.java, shows how to read a file as a
collection of lines of text.

Listing 24-6
ReadText.java
001: import java.io.*;
002:
003: public class ReadText {
...
020: // Construct File object for named file
021: public static File getFileForFilename(String filename)
022: throws IOException {
023: File fi = new File(filename);
024: // Do not move the following statements;
025: // order is critical
026: if (!fi.exists())
027: throw new IOException(fi.getName() + " not found");
028: if (!fi.isFile())
029: throw new IOException(fi.getName() + " is not a file");
030: return fi;
031: }
032:
033: // Main program method
034: public static void main(String args[]) {
035: String filename;
036: try {
037: // Get pathname from command line or prompt user
038: if (args.length > 0)
039: filename = args[0];
040: else
041: filename = readLine("Read what text file? ");
042: File fi = getFileForFilename(filename);
043: FileInputStream fin = new FileInputStream(fi);
044: BufferedReader bin =
045: new BufferedReader(new InputStreamReader(fin));
046: String line = bin.readLine(); // Read first line
047: while (line != null) { // Loop until end of file
048: System.out.println(line); // Print current line
049: line = bin.readLine(); // Read next line
050: }
051: } catch (IOException e) { // Trap exception
052: System.err.println(e.toString()); // Display error
053: }
054: }

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

495

055: }

Lines 042-045 show the correct way to create a BufferedReader object for reading text
files line by line. First, create the File object that represents the file. Here, local method
getFileForFilename() (lines 021-031) ensures that the specified file exists and that it is a
file, not a directory. After this, line 043 constructs the low-level FileInputStream object
using the File object:

FileInputStream fin = new FileInputStream(fi);

Finally, that object is used to construct the BufferedReader:

BufferedReader bin =
 new BufferedReader(new InputStreamReader(fin));

Use the resulting object to read the text file line by line. A while loop handles the job
nicely:

String line = bin.readLine();
while (line != null) {
 System.out.println(line);
 line = bin.readLine();
}

The DataOutputStream Class
As you might suppose, the counterpart to DataInputStream is DataOutputStream. Use this
class to construct a typed output stream object to which you can write strings, integers,
floating point values, and other typed data.

Construct a DataOutputStream object using the same three steps described for
DataInputStream. The only difference is that, if the file does not exist, it is created. An
existing file is overwritten by the class's output methods, some of which are described in
the next section.

Typed File Programming
As an example of how to use the DataOutputStream class, Listing 24-7, WriteData.java,
writes typed data to a test file named Data.bin in the current directory. The program also
demonstrates an effective, though not foolproof, way to check that the file contains the
expected type of data.

Listing 24-7
WriteData.java
001: import java.io.*;
002: import java.util.Random;
003:
004: public class WriteData {
005:
006: // Main program method
007: public static void main(String args[]) {
008: // Instance variables

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

496

009: int dataSize = 10;
010: Random gen = new Random();
011: try {
012: // Create file objects
013: FileOutputStream fout = new FileOutputStream("Data.bin");
014: BufferedOutputStream bout = new BufferedOutputStream(fout);
015: DataOutputStream dout = new DataOutputStream(bout);
016: // Write data to file in this order:
017: // 1. number of data elements
018: // 2. elements
019: dout.writeInt(dataSize);
020: for (int i = 0; i < dataSize; i++) {
021: dout.writeDouble(gen.nextDouble());
022: }
023: dout.flush();
024: fout.close();
025: System.out.println(dout.size() + " bytes written");
026: } catch (IOException e) { // Trap exception
027: System.err.println(e.toString()); // Display error
028: }
029: }
030: }

The sample program construc ts the typed output stream using three statements:

FileOutputStream fout = new FileOutputStream("Data.bin");
BufferedOutputStream bout = new BufferedOutputStream(fout);
DataOutputStream dout = new DataOutputStream(bout);

Rather than use a File object, as is typically done, this time the program specifies the
name of a data file as a string. The buffered output file object is created from the plain
stream, and finally, the DataOutputStream object, dout, is constructed using the buffered
stream from the second step. It is now a simple matter to write typed data to the file. The
file may contain any values, of any types, and in any order. To provide a simple
verification, the program first writes the number of data elements to the file using this
statement:

dout.writeInt(dataSize);

Next, a for loop writes that many double values, generated at random using an object of
the Random class:

for (int i = 0; i < dataSize; i++) {
 dout.writeDouble(gen.nextDouble());
}

After this, to ensure that the buffered values are written immediately to disk, and that the
stream is closed, the program executes two more statements:

dout.flush();
fout.close();

These actions are optional, but they flush any buffered data to disk and close the file,
releasing any held system resources. An output statement displays the number of bytes
written by calling the DataOutputStream method, size():

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

497

System.out.println(dout.size() + " bytes written");

The generated file contains two types of data: an integer that represents the number of
stored values, each of which is an 8-byte double. Listing 24-8, ReadData.java, shows how
to read the file data back into memory.

Listing 24-8
ReadData.java
001: import java.io.*;
002:
003: public class ReadData {
004:
005: // Main program method
006: public static void main(String args[]) {
007: // Instance variables
008: int dataSize;
009: double data[];
010: try {
011: // Create file objects
012: FileInputStream fin = new FileInputStream("Data.bin");
013: BufferedInputStream bin = new BufferedInputStream(fin);
014: DataInputStream din = new DataInputStream(bin);
015: // Read data from file in this order:
016: // 1. number of data elements
017: // 2. elements
018: dataSize = din.readInt(); // Get number of elements
019: data = new double[dataSize]; // Create array for data
020: // Read elements into array
021: for (int i = 0; i < dataSize; i++) {
022: data[i] = din.readDouble(); // Read each element
023: }
024: fin.close();
025: // Display results:
026: System.out.println("\n" + dataSize + " data elements:\n");
027: for (int i = 0; i < dataSize; i++) {
028: System.out.println("data[" + i + "] = " + data[i]);
029: }
030: } catch (EOFException eof) { // Trap EOF exception
031: System.err.println("File damaged or in wrong format");
032: } catch (IOException e) { // Trap exception
033: System.err.println(e.toString()); // Display error
034: }
035: }
036: }

The sample program uses the same DataInputStream class explained earlier to read the
integer and floating point values from the sample data file created by WriteData.java.
(For convenience, a copy of the data file is in the ReadData directory on the CD-ROM.)

To hold the data loaded from disk, the program declares an array of double values:

double data[];

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

498

Because Java arrays are created at runtime, the exact size of this array can be determined
after opening the file and determining how many values it contains. To do this, the
program opens the data file as a buffered stream using three statements:

FileInputStream fin = new FileInputStream("Data.bin");
BufferedInputStream bin = new BufferedInputStream(fin);
DataInputStream din = new DataInputStream(bin);

These are the same three steps you have seen in other examples. After constructing the
input data stream object, din, the program loads the integer stored at the head of the file
that indicates how many double values follow:

dataSize = din.readInt();

The array is then constructed to hold the indicated number of elements:

data = new double[dataSize];

After this step, a simple for loop loads the double values into the array:

for (int i = 0; i < dataSize; i++) {
 data[i] = din.readDouble(); // Read each element
}

The readDouble() method reads and returns one double value from the file. The rest of
the code in the sample displays these values.

Writing Text Files
Similar to the BufferedReader class, BufferedWriter provides the means to write text files
using strings that represent lines. The class's newLine() method ensures that the correct
new-line character terminates each line, and calling this method is preferred over writing
new-line characters explicitly. Listing 24-9, WriteText.java, demonstrates how to write
character data to a text file one line at a time.

Listing 24-9
WriteText.java
001: import java.io.*;
002:
003: public class WriteText {
004:
005: static String[] text = {
006: "This is a line of text",
007: "This is the second line",
008: "End of text" };
009:
010: // Main program method
011: public static void main(String args[]) {
012: try {
013: // Create output file object
014: BufferedWriter tout =
015: new BufferedWriter(new FileWriter("Data.txt"));
016: for (int i = 0; i < text.length; i++) {

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

499

017: tout.write(text[i]);
018: tout.newLine();
019: }
020: tout.flush();
021: tout.close();
022: System.out.println("File created");
023: } catch (IOException e) { // Trap exception
024: System.err.println(e.toString()); // Display error
025: }
026: }
027: }

Running the program creates a file named Data.txt in the current directory with three
lines of text, stored in a static array (lines 005-008). To create the text-file stream,
construct a BufferedWriter object like this:

BufferedWriter tout =
 new BufferedWriter(new FileWriter("Filename.txt"));

You may instead pass any Writer object to the constructor, and in that way use a File
object to represent the file. Use that method, for example, to check whether a file exists
before overwriting it. After creating the BufferedWriter stream object, use it as shown at
lines 016-019 to write lines of text to the file. As mentioned, instead of writing the new-
line character @@sp\n@@sp explicitly, it's best to call newLine() in the output loop to
terminate each line:

tout.write(text[i]);
tout.newLine();

When finished writing, the program flushes and closes the output stream (see lines 020-
021). This simple program could skip the call to flush(). However, if you need to keep the
output stream open for any length of time, call flush() every so often to ensure that any
buffered text is written to the output file.

Random Access File I/O
The term random access is often associated with database file programming, but the term
has general application in other types of file I/O. Using the RandomAccessFile class, you
can access a file's data randomly at any position. For example, you can skip to a
particular byte and read data of a known type at that location.

The RandomAccessFile class handles input and output using random-access techniques.
This is a large class with numerous methods such as writeInt() and and readLong() that
you can call to read and write typed data. To demonstrate how to use the class, Listing
24-10, ReadRandom.java, reads individual values from a copy of the Data.bin file created
by the WriteData.java sample application in this chapter.

Listing 24-10
ReadRandom.java
001: import java.io.*;

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

500

002:
003: public class ReadRandom {
...
019: // Main program method
020: public static void main(String args[]) {
021: // Instance variables
022: int dataSize; // Number of elements in file
023: int rn; // Record number
024: double value; // Value of requested record
025: int sizeOfInt = 4; // Size of int variable
026: int sizeOfDouble = 8; // Size of double variable
027: boolean wantsToQuit = false;
028: try {
029: // Create file objects
030: File fi = new File("Data.bin");
031: RandomAccessFile rin = new RandomAccessFile(fi, "r");
032: dataSize = rin.readInt(); // Get number of elements
033: // Prompt user for element to read
034: System.out.println("\nFile has " +
035: dataSize + " elements\n");
036: while (!wantsToQuit) {
037: rn = getRecordNumber();
038: wantsToQuit = (rn == –1);
039: if (!wantsToQuit) {
040: // Seek to requested record
041: rin.seek(sizeOfInt + (rn * sizeOfDouble));
042: // Read and display value
043: value = rin.readDouble();
044: System.out.println("Record " + rn + " = " + value);
045: }
046: }
047: } catch (IOException e) { // Trap exception
048: System.err.println(e.toString()); // Display error
049: }
050: }
051: }

Compile and run the program using the following commands. Enter the record number of
the data value to read. Enter –1 to end the program. Here's a small sample run:

javac ReadRandom.java
java ReadRandom
File has 10 elements
Record number (–1 to quit)? 4
Record 4 = 0.9635224138277356
Record number (–1 to quit)? –1

To access the data in the file at random, the program constructs two objects using these
statements:

File fi = new File("Data.bin");
RandomAccessFile rin = new RandomAccessFile(fi, "r");

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

501

The first line creates a File object that refers to Data.bin. That object and the mode string
@@dpr@@dp (for read-only access) are passed to the RandomAccessFile constructor.
Change the mode string to @@dprw@@dp for read and write access. (There is no write-
only @@dpw@@dp mode because that would be senseless.) The resulting object, rin, is
ready for use in randomly accessing the file's data.

In preparation for that operation, the program reads and reports the number of elements
from the head of the file. After prompting you to enter a record number, which can be
from zero to the number of reported elements minus one, the program positions the file
pointer using seek():

rin.seek(sizeOfInt + (rn * sizeOfDouble));

This statement multiplies the requested record number by the size of a record (a single
double value). Added to the size of an integer — which accounts for the value written to
the head of the file — the statement positions the file pointer to the first byte of the
required record. The next statement

value = rin.readDouble();

reads that value into a double variable. You could use similar techniques to read data of
any types — even objects of classes that might, for example, represent database records.

Summary
* The java.io package provides numerous classes for file I/O programming.

However, for security reasons, you may use these classes only in a stand-alone
program, not an applet running in an Internet browser.

* Use the File class to represent filenames, directories, and paths. Paths may be
absolute or relative.

* Use the FileInputStream and FileOutputStream classes to access file data using
simple unbuffered streams.

* Use the BufferedInputStream and BufferedOutputStream to access file data using
buffered streams. This may improve the program's performance.

* For reading and writing typed file data, Java provides the DataInputStream and
DataOutputStream classes. Use these classes to read and write data of any non-
text type of data.

* Use BufferedReader and BufferedWriter for text file input and output. In general,
stream I/O classes with "Reader" and "Writer" in their names are for use with
character data.

* To read and write data at random locations in files, construct an object of the
RandomAccessFile class. This class contains numerous methods for seeking a file
position and then reading and writing data at that location. The class has
numerous methods you can use to read and write typed and untyped file data.

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

502

Chapter 25 Just Click! Solutions by Name
In this chapter is a copy of the online "Just Click! Solutions by Name" index for use
when you don't have access to your computer. To view this index online, open the
byname.html file on the CD-ROM using your favorite Web browser. You can then click
on any entry to go directly to that line in the listing file. For reference, the listing page
numbers are also printed here and shown online. Note the line number before clicking or
turning the page — this will help you locate the exact solution you need. See Chapter 2,
"Using the Just Click! Solutions Indexes," for more information about using the by-name
and by-subject indexes online.

Solutions by Name
***Production: Beginning here, each GX paragraph should be 1 point size smaller
than usual. Thanks.***

2D graphics demonstration (application), Listing 23-1, GraphicsApp/GraphicsApp.java, Line 001,
Page 512

AbstractDemo.java, Listing 11-6, AbstractDemo/AbstractDemo.java, Line 001, Page 225

AbsValue.java, Listing 9-2, AbsValue/AbsValue.java, Line 001, Page 161

Accessing private data, Listing 6-5, Serial/Serial.java, Line 009, Page 91

Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 013, Page 504

ActionListener class, implementing, Listing 20-5, Delegate/Delegate.java, Line 011, Page 418

Add a scroller to a text area object, Listing 22-10, TextDemo/TextDemo.java, Line 031, Page 490

Add an icon to a text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 031, Page 485

Add button to applet pane, Listing 21-8, BoxDemo/BoxDemo.java, Line 007, Page 459

Add Button to AWT applet, Listing 20-3, BackColor/BackColor.java, Line 009, Page 414

Add tooltip text to a button, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

Adding a button to a Panel and set its listener, Listing 20-7, ColorApp/ColorApp.java, Line 012,
Page 426

Adding a string object to a HashSet container, Listing 16-4, ParseWords/ParseWords.java, Line
020, Page 317

Adding a toolbar to a frame, Listing 22-14, ToolDemo/ToolDemo.java, Line 120, Page 504

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

503

Adding objects to a List, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 018, Page 282

Adding strings to a container, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 006, Page
272

Animating bitmap images, Listing 23-8, Animation/Animation.java, Line 001, Page 547

Animation in applets, Listing 23-8, Animation/Animation.java, Line 004, Page 547

Animation.java, Listing 23-8, Animation/Animation.java, Line 001, Page 547

Appending characters to a StringBuffer object, Listing 6-7, OutputDemo/OutputDemo.java, Line
005, Page 95

Appending to a StringBuffer object, Listing 8-14, StringAppend/StringAppend.java, Line 010,
Page 145

Applet, creating a simple AWT applet, Listing 20-1, AppletADay/AppletADay.java, Line 001,
Page 405

Applet, extending, Listing 20-1, AppletADay/AppletADay.java, Line 005, Page 405

AppletADay.java, Listing 20-1, AppletADay/AppletADay.java, Line 001, Page 405

Array boundary exceptions, Listing 10-1, ArrayBounds/ArrayBounds.java, Line 001, Page 190

ArrayBounds.java, Listing 10-1, ArrayBounds/ArrayBounds.java, Line 001, Page 190

ArrayCopy.java, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 001, Page 196

ArrayList methods (see also Collection, List), Listing 15-2, ArrayList.txt, Line 001, Page 278

ArrayList.txt, Listing 15-2, ArrayList.txt, Line 001, Page 278

ArrayListDemo.java, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 001, Page 282

ArraysEqual.txt, Listing 10-11, ArraysEqual.txt, Line 001, Page 208

ArraysFill.txt, Listing 10-12, ArraysFill.txt, Line 001, Page 209

ArraysList.java, Listing 10-14, ArraysList/ArraysList.java, Line 001, Page 211

ArraysList.txt, Listing 10-13, ArraysList.txt, Line 001, Page 211

ArraysSearch.txt, Listing 10-10, ArraysSearch.txt, Line 001, Page 207

ArraysSort.txt, Listing 10-6, ArraysSort.txt, Line 001, Page 202

Assigning a value to a variable, Listing 4-3, VarDemo/VarDemo.java, Line 004, Page 49

AWT deprecated handleEvent() method, Listing 20-4, MouseXY/MouseXY.java, Line 026, Page
416

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

504

AWT old inheritance event model, Listing 20-4, MouseXY/MouseXY.java, Line 001, Page 416

AWT's old inheritance model, Listing 20-3, BackColor/BackColor.java, Line 001, Page 414

BackColor.java, Listing 20-3, BackColor/BackColor.java, Line 001, Page 414

Background process, creating, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 041, Page 372

Background process, starting, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 047, Page 372

BinaryDemo.java, Listing 15-12, BinaryDemo/BinaryDemo.java, Line 001, Page 300

binarySearch() method preparations, Listing 15-12, BinaryDemo/BinaryDemo.java, Line 037,
Page 300

Bits, setting in a BitSet container, Listing 18-3, BitSetDemo/BitSetDemo.java, Line 013, Page
358

BitSet constructors and methods, Listing 18-2, BitSet.txt, Line 001, Page 356

BitSet containers, creating, Listing 18-3, BitSetDemo/BitSetDemo.java, Line 009, Page 358

BitSet.txt, Listing 18-2, BitSet.txt, Line 001, Page 356

BitSetDemo.java, Listing 18-3, BitSetDemo/BitSetDemo.java, Line 001, Page 358

Boolean wrapper class constructors, Listing 9-14, Boolean.txt, Line 005, Page 173

Boolean wrapper class fields, Listing 9-14, Boolean.txt, Line 001, Page 173

Boolean wrapper class methods, Listing 9-14, Boolean.txt, Line 009, Page 173

Boolean wrapper class public declarations, Listing 9-14, Boolean.txt, Line 001, Page 173

Boolean.txt, Listing 9-14, Boolean.txt, Line 001, Page 173

BooleanDemo.java, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 001, Page 174

BorderDemo.java, Listing 21-5, BorderDemo/BorderDemo.java, Line 001, Page 454

BorderFactory, using to set a component's border, Listing 21-1, SwingApplet/SwingApplet.java,
Line 008, Page 438

BorderLayout demonstration, Listing 21-5, BorderDemo/BorderDemo.java, Line 001, Page 454

BoxDemo.java, Listing 21-8, BoxDemo/BoxDemo.java, Line 001, Page 459

BoxLayout demonstration, Listing 21-8, BoxDemo/BoxDemo.java, Line 001, Page 459

break in a switch case, Listing 5-1, Switcher/Switcher.java, Line 011, Page 72

break statement, Listing 5-5, LabelDemo/LabelDemo.java, Line 012, Page 76

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

505

BufferedReader class, using, Listing 24-1, ReadLine/ReadLine.java, Line 005, Page 557

Button and check box demonstration, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 001,
Page 469

Button objects, creating, Listing 20-5, Delegate/Delegate.java, Line 007, Page 418

ButtonDemo.java, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 001, Page 469

ButtonIcon.java, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001, Page 464

Byte wrapper class constructors, Listing 9-21, Byte.txt, Line 001, Page 181

Byte wrapper c lass methods, Listing 9-21, Byte.txt, Line 005, Page 181

Byte wrapper class public declarations, Listing 9-21, Byte.txt, Line 001, Page 181

Byte.txt, Listing 9-21, Byte.txt, Line 001, Page 181

C and C++ style comments, Listing 4-2, NoComment/NoComment.java, Line 013, Page 44

C++ style comments, Listing 4-2, NoComment/NoComment.java, Line 009, Page 44

Call an object's public class method, Listing 6-1, DateObject/DateObject.java, Line 026, Page 81

Calling a superclass constructor, Listing 11-2, ProtectedData/ProtectedData.java, Line 020, Page
216

Calling intern() for a pooled string, Listing 8-11, StringIntern/StringIntern.java, Line 003, Page
139

Calling Iterator.remove() properly, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 033, Page
289

Calling Object.clone(), Listing 12-5, CloneDemo/CloneDemo.java, Line 051, Page 240

Calling superclass constructor, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 004, Page 109

Calling the sort() method, Listing 10-7, SortStrings/SortStrings.java, Line 016, Page 203

Catching a string-to-integer parsing error, Listing 9-5, PowerDemo/PowerDemo.java, Line 012,
Page 163

Catching a thrown exception object, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 047, Page
105

Catching an IOException error, Listing 8-18, InputString/InputString.java, Line 014, Page 156

Catching ArrayIndexOutOfBoundsException, Listing 10-1, ArrayBounds/ArrayBounds.java,
Line 004, Page 190

Catching IOException errors, Listing 6-8, InputDemo/InputDemo.java, Line 019, Page 96

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

506

CeilFloor.java, Listing 9-4, CeilFloor/CeilFloor.java, Line 001, Page 162

Character class "is" methods, Listing 8-15, Character.txt, Line 015, Page 150

Character class constructor, Listing 8-15, Character.txt, Line 001, Page 150

Character class methods, Listing 8-15, Character.txt, Line 004, Page 150

Character class other methods, Listing 8-15, Character.txt, Line 034, Page 150

Character.txt, Listing 8-15, Character.txt, Line 001, Page 150

Character-class type constants, Listing 8-17, ChType/ChType.java, Line 008, Page 154

CharArray.java, Listing 8-3, CharArray/CharArray.java, Line 001, Page 128

CharEncoding.java, Listing 8-4, CharEncoding/CharEncoding.java, Line 001, Page 130

Chart.java, Listing 15-4, ArrayListDemo/Chart.java, Line 001, Page 281

Check boxes, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

ChRadix.java, Listing 8-16, ChRadix/ChRadix.java, Line 001, Page 152

ChType.java, Listing 8-17, ChType/ChType.java, Line 001, Page 154

Class constructor with parameters, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 002, Page
105

Class constructor, creating, Listing 6-9, FinalDemo/FinalDemo.java, Line 002, Page 98

Class that feeds jobs to a server for processing, Listing 19-9, LockDemo/Client.java, Line 001,
Page 397

Client.java, Listing 19-9, LockDemo/Client.java, Line 001, Page 397

CloneDemo.java, Listing 12-5, CloneDemo/CloneDemo.java, Line 001, Page 240

Cloning array contents, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 024, Page 196

Cloning arrays via Object.clone(), Listing 10-4, ArrayCopy/ArrayCopy.java, Line 024, Page 196

Closing a window, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 013, Page 449

Collection interface methods, Listing 14-1, Collection.txt, Line 001, Page 270

Collection.txt, Listing 14-1, Collection.txt, Line 001, Page 270

Collections utility methods, Listing 18-1, Collections.txt, Line 001, Page 347

Collections.txt, Listing 18-1, Collections.txt, Line 001, Page 347

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

507

ColorApp.java, Listing 20-7, ColorApp/ColorApp.java, Line 001, Page 426

ColorDemo.java, Listing 22-7, ColorDemo/ColorDemo.java, Line 001, Page 484

ComboDemo.java, Listing 22-12, ComboDemo/ComboDemo.java, Line 001, Page 496

Command-line arguments, reading, Listing 8-19, CommandLine/CommandLine.java, Line 001,
Page 157

CommandLine.java, Listing 8-19, CommandLine/CommandLine.java, Line 001, Page 157

Common to Float and Double classes, Listing 9-23, FloatCommon.txt, Line 001, Page 182

Common to Short, Byte, Integer, and Long classes, Listing 9-17, IntCommon.txt, Line 001, Page
177

Comparator "factory" methods, Listing 15-6, ComparatorDemo/Chart.java, Line 025, Page 285

Comparator compare() method, implementing, Listing 15-6, ComparatorDemo/Chart.java, Line
046, Page 285

Comparator interface, implementing, Listing 15-6, ComparatorDemo/Chart.java, Line 001, Page
285

Comparator objects, using to sort, Listing 15-7, ComparatorDemo/ComparatorDemo.java, Line
001, Page 287

ComparatorDemo.java, Listing 15-7, ComparatorDemo/ComparatorDemo.java, Line 001, Page
287

Compare one string to another, Listing 8-7, Compare/Compare.java, Line 005, Page 134

Compare.java, Listing 8-7, Compare/Compare.java, Line 001, Page 134

Comparison operators, Listing 8-7, Compare/Compare.java, Line 006, Page 134

Concat.java, Listing 8-9, Concat/Concat.java, Line 001, Page 137

Concatenation using concat(), Listing 8-9, Concat/Concat.java, Line 007, Page 137

Confirmation dialogs, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 001, Page 478

Constant fields, declaring, Listing 15-6, ComparatorDemo/Chart.java, Line 004, Page 285

Construct 8-bit ASCII character byte array, Listing 8-4, CharEncoding/CharEncoding.java, Line
006, Page 130

Construct array of class objects, Listing 10-3, ObjectArray/ObjectArray.java, Line 015, Page 194

Construct File object for a directory path, Listing 24-2, Directory/Directory.java, Line 020, Page
561

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

508

Construct File object for a named file, Listing 24-3, FileInfo/FileInfo.java, Line 021, Page 563

Constructing a Comparator object, Listing 10-9, SortComparator/SortComparator.java, Line 026,
Page 206

Constructing a container object, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 005,
Page 272

Constructing a HashSet container, Listing 16-4, ParseWords/ParseWords.java, Line 010, Page
317

Constructing a thread using a Runnable class, Listing 19-4, Primes/Primes.java, Line 063, Page
377

Constructing a TreeSet container, Listing 16-6, ParseTree/ParseTree.java, Line 010, Page 321

Constructing an array of char, Listing 8-3, CharArray/CharArray.java, Line 004, Page 128

Constructing an ArrayList container, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line
015, Page 282

Constructing an AWT applet using a Listener object, Listing 20-5, Delegate/Delegate.java, Line
025, Page 418

ContainerDemo.java, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 001, Page 272

Content pane, adding a component to the, Listing 21-1, SwingApplet/SwingApplet.java, Line 009,
Page 438

Content plane, adding components pane to, Listing 21-2, SwingApp/SwingApp.java, Line 027,
Page 442

continue statement, Listing 5-5, LabelDemo/LabelDemo.java, Line 010, Page 76

Convert an array to a List object, Listing 10-14, ArraysList/ArraysList.java, Line 010, Page 211

Convert byte array to a String using a character encoding, Listing 8-4,
CharEncoding/CharEncoding.java, Line 009, Page 130

Convert command line string argument to an integer, Listing 15-12,
BinaryDemo/BinaryDemo.java, Line 037, Page 300

Convert string to lowercase using a Locale, Listing 8-8, StringLocale/StringLocale.java, Line 007,
Page 136

Converting int to char using type-casting, Listing 9-2, AbsValue/AbsValue.java, Line 004, Page
161

Converting integers to any number-base strings, Listing 9-19, ConvertInt/ConvertInt.java, Line
016, Page 179

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

509

Converting integers to binary strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 014, Page
179

Converting integers to hexadecimal strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 010,
Page 179

Converting integers to octal strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 012, Page 179

Converting integers to strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 008, Page 179

ConvertInt.java, Listing 9-19, ConvertInt/ConvertInt.java, Line 001, Page 179

CopyFile.java, Listing 24-5, CopyFile/CopyFile.java, Line 001, Page 568

Copying array contents, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 015, Page 196

Copying array references, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 007, Page 196

Copying arrays via System.arraycopy(), Listing 10-4, ArrayCopy/ArrayCopy.java, Line 015,
Page 196

CosDemo.java, Listing 9-8, CosDemo/CosDemo.java, Line 001, Page 166

Create a HashMap container and insert some associations, Listing 17-4,
SymbolMap/SymbolMap.java, Line 018, Page 334

Create a JFrame child window, Listing 23-3, FontDemo/FontDemo.java, Line 006, Page 521

Create a JTextArea object, Listing 22-10, TextDemo/TextDemo.java, Line 026, Page 490

Create a simple default text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 028, Page 485

Create a TreeMap container, Listing 17-7, Dictionary/Dictionary.java, Line 006, Page 342

Create an object of a class using new, Listing 6-1, DateObject/DateObject.java, Line 021, Page
81

Create button using an icon image, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

Create listener using an anonymous class, Listing 20-6, RandomColor/RandomColor.java, Line
014, Page 425

Create popup menu and command objects, Listing 22-13, PopupDemo/PopupDemo.java, Line
008, Page 499

Create username and password entry objects, Listing 22-9, Password/Password.java, Line 008,
Page 487

Creating a ButtonGroup object, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Creating a package, Listing 13-1, PackageTest/stuff/TClass1.java, Line 001, Page 253

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

510

Creating a popup menu, Listing 22-13, PopupDemo/PopupDemo.java, Line 030, Page 499

Creating a private inner Comparator class, Listing 15-6, ComparatorDemo/Chart.java, Line 036,
Page 285

Creating a random number generator object, Listing 9-11, RandGen/RandGen.java, Line 005,
Page 169

Creating a Stack class from LinkedList, Listing 15-13, StackDemo/Stack.java, Line 008, Page
303

Creating a string from an array of char, Listing 8-3, CharArray/CharArray.java, Line 007, Page
128

Creating a StringBuffer object, Listing 6-7, OutputDemo/OutputDemo.java, Line 003, Page 95

Creating a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line 014, Page 322

Creating a window border, Listing 21-2, SwingApp/SwingApp.java, Line 011, Page 442

Creating action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 032, Page 504

Creating an exception object, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 014, Page 105

Creating an interface, Listing 12-2, InterfaceDemo/TContainerInterface.java, Line 001, Page 234

Creating long literal strings, Listing 8-6, MonthNames/MonthNames.java, Line 003, Page 133

Creating name-only exceptions, Listing 7-3, NestedTry/NestedTry.java, Line 001, Page 111

Data hiding and synchronization, an illustration, Listing 19-5, SafetyClass/SafetyClass.java, Line
001, Page 385

DataHiding.java, Listing 11-1, DataHiding/DataHiding.java, Line 001, Page 214

Date object, creating, Listing 6-2, DateDemo/DateDemo.java, Line 006, Page 85

DateDemo.java, Listing 6-2, DateDemo/DateDemo.java, Line 001, Page 85

DateObject.java, Listing 6-1, DateObject/DateObject.java, Line 001, Page 81

DateShow.java, Listing 6-3, DateShow/DateShow.java, Line 001, Page 86

Decimal, hexadecimal, and octal integers, Listing 4-4, IntDemo/IntDemo.java, Line 004, Page 52

Declare a class, Listing 6-1, DateObject/DateObject.java, Line 002, Page 81

Declaring a method's checked exceptions, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 012,
Page 105

Declaring a variable, Listing 4-3, VarDemo/VarDemo.java, Line 003, Page 49

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

511

Declaring an abstract class, Listing 11-3, AbstractDemo/TObject.java, Line 001, Page 220

Declaring an interface, Listing 12-1, TheInterface/TheInterface.java, Line 003, Page 232

Declaring method array parameters, Listing 10-5, ArrayCopy/TestClass.java, Line 002, Page 197

Declaring method parameters, Listing 6-1, DateObject/DateObject.java, Line 006, Page 81

Declaring protected instance variables, Listing 11-2, ProtectedData/ProtectedData.java, Line 001,
Page 216

Delegate.java, Listing 20-5, Delegate/Delegate.java, Line 001, Page 418

Delegation event model AWT application, Listing 20-7, ColorApp/ColorApp.java, Line 001,
Page 426

Delegation event model using anonymous class, Listing 20-6, RandomColor/RandomColor.java,
Line 001, Page 425

Delegation event model using buttons, Listing 20-5, Delegate/Delegate.java, Line 001, Page 418

Demonstrate a two-state toggle button, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 001,
Page 466

Demonstrate icons and html in JLabel objects, Listing 22-8, LabelDemo/LabelDemo.java, Line
001, Page 485

Demonstrate JTextArea, Listing 22-10, TextDemo/TextDemo.java, Line 001, Page 490

Demonstrate JTextField and JPasswordField, Listing 22-9, Password/Password.java, Line 001,
Page 487

Demonstrate Stack (extended LinkedList) class, Listing 15-14, StackDemo/StackDemo.java, Line
001, Page 306

Demonstrate using an abstract class, Listing 11-6, AbstractDemo/AbstractDemo.java, Line 001,
Page 225

Demonstrate using an implemented interface, Listing 12-4, InterfaceDemo/InterfaceDemo.java,
Line 001, Page 237

Demonstrates Boolean.getBoolean(), Listing 9-16, GetProperty/GetProperty.java, Line 001, Page
176

Deprecated AWT action() method, Listing 20-3, BackColor/BackColor.java, Line 016, Page 414

Determine a char's integer Unicode value, Listing 8-17, ChType/ChType.java, Line 023, Page
154

Dictionary.java, Listing 17-7, Dictionary/Dictionary.java, Line 001, Page 342

Directory.java, Listing 24-2, Directory/Directory.java, Line 001, Page 561

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

512

Display a Collection using an Iterator, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 008,
Page 289

Display a Color in various shades (gradients), Listing 23-2, Gradient/Gradient.java, Line 001,
Page 517

Display a Map container's keys and values, Listing 17-4, SymbolMap/SymbolMap.java, Line 006,
Page 334

Display icon images in JButton objects, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001,
Page 464

Display information about a File object, Listing 24-3, FileInfo/FileInfo.java, Line 040, Page 563

Display integer variables, Listing 4-4, IntDemo/IntDemo.java, Line 009, Page 52

Display value of a variable, Listing 4-3, VarDemo/VarDemo.java, Line 005, Page 49

Displaying a byte array, Listing 9-12, RandomBytes/RandomBytes.java, Line 007, Page 171

Displaying a HashSet container's contents, Listing 16-4, ParseWords/ParseWords.java, Line 034,
Page 317

Displaying a TreeSet container's contents, Listing 16-6, ParseTree/ParseTree.java, Line 034, Page
321

Displaying objects in a List container, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line
008, Page 282

Documentation comments, Listing 4-2, NoComment/NoComment.java, Line 005, Page 44

Double wrapper class bit converters, Listing 9-26, Double.txt, Line 013, Page 184

Double wrapper class constructors, Listing 9-26, Double.txt, Line 001, Page 184

Double wrapper class methods, Listing 9-26, Double.txt, Line 005, Page 184

Double wrapper class public declarations, Listing 9-26, Double.txt, Line 001, Page 184

Double.txt, Listing 9-26, Double.txt, Line 001, Page 184

do-while statement, Listing 5-3, DoWhileCount/DoWhileCount.java, Line 004, Page 74

DoWhileCount.java, Listing 5-3, DoWhileCount/DoWhileCount.java, Line 001, Page 74

Empty.txt, Listing 2-0, Empty.txt, Line 001

End program when window closes, Listing 20-7, ColorApp/ColorApp.java, Line 037, Page 426

Ending program when window closes, Listing 21-2, SwingApp/SwingApp.java, Line 029, Page
442

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

513

Equality operator in an if statement, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 020, Page
105

Equality testing methods, Listing 10-11, ArraysEqual.txt, Line 001, Page 208

ExceptDemo.java, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 001, Page 105

Exclusive-or operations on a BitSet container, Listing 18-3, BitSetDemo/BitSetDemo.java, Line
018, Page 358

Extending a class, Listing 6-3, DateShow/DateShow.java, Line 003, Page 86

Extending a class with protected data, Listing 11-2, ProtectedData/ProtectedData.java, Line 016,
Page 216

Extending the Exception class, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 002, Page 109

Extending the JFrame class, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 005, Page 464

FileDialog.java, Listing 22-6, FileDialog/FileDialog.java, Line 001, Page 480

FileInfo.java, Listing 24-3, FileInfo/FileInfo.java, Line 001, Page 563

FilenameFilter interface, implementing, Listing 24-4, FilterDir/FilterDir.java, Line 003, Page 565

File-open and file-save dialogs, Listing 22-6, FileDialog/FileDialog.java, Line 001, Page 480

Filling methods, Listing 10-12, ArraysFill.txt, Line 001, Page 209

Filter filenames using FilenameFilter interface, Listing 24-4, FilterDir/FilterDir.java, Line 001,
Page 565

Filter.java, Listing 23-6, Filter/Filter.java, Line 001, Page 541

FilterDir.java, Listing 24-4, FilterDir/FilterDir.java, Line 001, Page 565

FinalDemo.java, Listing 6-9, FinalDemo/FinalDemo.java, Line 001, Page 98

finalize() method, Listing 6-9, FinalDemo/FinalDemo.java, Line 005, Page 98

FinallyDemo.java, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 001, Page 109

Finding index of character, Listing 8-6, MonthNames/MonthNames.java, Line 008, Page 133

Float wrapper class bit converters, Listing 9-24, Float.txt, Line 014, Page 183

Float wrapper class constructors, Listing 9-24, Float.txt, Line 001, Page 183

Float wrapper class methods, Listing 9-24, Float.txt, Line 006, Page 183

Float wrapper class public declarations, Listing 9-24, Float.txt, Line 001, Page 183

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

514

Float.txt, Listing 9-24, Float.txt, Line 001, Page 183

Floatable toolbar, enabling and disabling, Listing 22-14, ToolDemo/ToolDemo.java, Line 120,
Page 504

FloatCommon.txt, Listing 9-23, FloatCommon.txt, Line 001, Page 182

FlowDemo.java, Listing 21-4, FlowDemo/FlowDemo.java, Line 001, Page 453

FlowLayout demonstration, Listing 21-4, FlowDemo/FlowDemo.java, Line 001, Page 453

Font demonstration, Listing 23-3, FontDemo/FontDemo.java, Line 001, Page 521

FontDemo.java, Listing 23-3, FontDemo/FontDemo.java, Line 001, Page 521

for statement, Listing 5-4, ForCount/ForCount.java, Line 004, Page 75

ForCount.java, Listing 5-4, ForCount/ForCount.java, Line 001, Page 75

Frames, creating, Listing 20-7, ColorApp/ColorApp.java, Line 032, Page 426

Friendly instance variables, Listing 13-1, PackageTest/stuff/TClass1.java, Line 004, Page 253

Get information about a file, Listing 24-3, FileInfo/FileInfo.java, Line 001, Page 563

Get text from JPasswordField object, Listing 22-9, Password/Password.java, Line 052, Page 487

GetProperty.java, Listing 9-16, GetProperty/GetProperty.java, Line 001, Page 176

Getting a boolean property value, Listing 9-16, GetProperty/GetProperty.java, Line 013, Page
176

Getting a non-boolean property value, Listing 9-16, GetProperty/GetProperty.java, Line 017,
Page 176

Getting a non-inclusive subset of a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line
024, Page 322

Getting a radix digit for a character, Listing 8-16, ChRadix/ChRadix.java, Line 006, Page 152

Getting a TreeMap's key set, Listing 17-7, Dictionary/Dictionary.java, Line 022, Page 342

Getting an inclusive subset of a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line 027,
Page 322

Getting random numbers from a Random object, Listing 9-11, RandGen/RandGen.java, Line 010,
Page 169

Getting strings from a container, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 013,
Page 272

Getting the type of a character, Listing 8-17, ChType/ChType.java, Line 005, Page 154

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

515

Gradient.java, Listing 23-2, Gradient/Gradient.java, Line 001, Page 517

Gradients using the Color class, Listing 23-2, Gradient/Gradient.java, Line 022, Page 517

GraphicsApp.java, Listing 23-1, GraphicsApp/GraphicsApp.java, Line 001, Page 512

GridBagDemo.java, Listing 21-7, GridBagDemo/GridBagDemo.java, Line 001, Page 456

GridBagLayout demonstration, Listing 21-7, GridBagDemo/GridBagDemo.java, Line 001, Page
456

GridDemo.java, Listing 21-6, GridDemo/GridDemo.java, Line 001, Page 455

GridLayout demonstration, Listing 21-6, GridDemo/GridDemo.java, Line 001, Page 455

Halting a thread, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 030, Page 372

HashMap constructors and method (see also Map), Listing 17-3, HashMap.txt, Line 001, Page
333

HashMap.txt, Listing 17-3, HashMap.txt, Line 001, Page 333

HashSet constructors (see also Set), Listing 16-3, HashSet.txt, Line 001, Page 315

HashSet.txt, Listing 16-3, HashSet.txt, Line 001, Page 315

Hiding data using private access specifier, Listing 11-1, DataHiding/DataHiding.java, Line 001,
Page 214

How to bring up a Swing popup menu, Listing 22-13, PopupDemo/PopupDemo.java, Line 017,
Page 499

How to create a multiple, nested container object, Listing 17-7, Dictionary/Dictionary.java, Line
001, Page 342

if statement, Listing 8-6, MonthNames/MonthNames.java, Line 009, Page 133

if statements, examples of nested, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 014, Page
105

Image filtering using RGBImageFilter, Listing 23-6, Filter/Filter.java, Line 009, Page 541

Image filtering, color to black-and-white, Listing 23-6, Filter/Filter.java, Line 001, Page 541

Image loading and display, Listing 23-4, ShowPic/ShowPic.java, Line 001, Page 530

Image loading and displaying using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 001,
Page 546

Images, loading using threaded code, Listing 23-4, ShowPic/ShowPic.java, Line 027, Page 530

Implementing an abstract class, Listing 11-5, AbstractDemo/TMyObject.java, Line 001, Page 224

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

516

Implementing an interface, Listing 12-3, InterfaceDemo/TContainer.java, Line 001, Page 235

Implementing Comparator, Listing 10-9, SortComparator/SortComparator.java, Line 004, Page
206

Implementing the Cloneable interface, Listing 12-5, CloneDemo/CloneDemo.java, Line 002,
Page 240

Implementing the Comparable interface, Listing 10-8, SortObjects/SortObjects.java, Line 003,
Page 204

Implementing the Runnable interface, Listing 19-4, Primes/Primes.java, Line 003, Page 377

Import a container class (ArrayList), Listing 14-2, ContainerDemo/ContainerDemo.java, Line
001, Page 272

Import the Iterator interface, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 001, Page 289

Import the Locale class, Listing 8-8, StringLocale/StringLocale.java, Line 001, Page 136

Importing a class from a package, Listing 6-2, DateDemo/DateDemo.java, Line 001, Page 85

Importing and using Collection, Listing 15-13, StackDemo/Stack.java, Line 001, Page 303

Importing and using named packages, Listing 13-4, PackageTest/PackageTest.java, Line 001,
Page 255

Importing IOException, Listing 8-18, InputString/InputString.java, Line 001, Page 156

Importing the Arrays class, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

Importing the Random java.util class, Listing 9-11, RandGen/RandGen.java, Line 001, Page 169

Increment operator and char, Listing 6-7, OutputDemo/OutputDemo.java, Line 004, Page 95

Increment operator in for statement, Listing 5-4, ForCount/ForCount.java, Line 004, Page 75

Incrementing flow-control variable, Listing 5-3, DoWhileCount/DoWhileCount.java, Line 005,
Page 74

Initializing applet in threaded code, Listing 23-8, Animation/Animation.java, Line 019, Page 547

InputDemo.java, Listing 6-8, InputDemo/InputDemo.java, Line 001, Page 96

InputString.java, Listing 8-18, InputString/InputString.java, Line 001, Page 156

Inputting a character, Listing 19-4, Primes/Primes.java, Line 046, Page 377

Insertions into nested containers, Listing 17-7, Dictionary/Dictionary.java, Line 029, Page 342

IntCommon.txt, Listing 9-17, IntCommon.txt, Line 001, Page 177

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

517

IntDemo.java, Listing 4-4, IntDemo/IntDemo.java, Line 001, Page 52

Integer data types, Listing 4-4, IntDemo/IntDemo.java, Line 014, Page 52

Integer wrapper class constructors, Listing 9-18, Integer.txt, Line 001, Page 179

Integer wrapper class methods, Listing 9-18, Integer.txt, Line 005, Page 179

Integer wrapper class property methods, Listing 9-18, Integer.txt, Line 017, Page 179

Integer wrapper class public declarations, Listing 9-18, Integer.txt, Line 001, Page 179

Integer.txt, Listing 9-18, Integer.txt, Line 001, Page 179

InterfaceDemo.java, Listing 12-4, InterfaceDemo/InterfaceDemo.java, Line 001, Page 237

Iterator interface methods, Listing 15-8, Iterator.txt, Line 001, Page 288

Iterator.txt, Listing 15-8, Iterator.txt, Line 001, Page 288

IteratorDemo.java, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 001, Page 289

Iterators and the ArrayList class, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 042, Page
289

JColorChooser component demonstration, Listing 22-7, ColorDemo/ColorDemo.java, Line 001,
Page 484

JComboBox demonstration, Listing 22-12, ComboDemo/ComboDemo.java, Line 001, Page 496

JComboBox, create selection list, Listing 22-12, ComboDemo/ComboDemo.java, Line 030, Page
496

JFrame, extending in application class, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 005, Page 449

JFrame, setting the title and size, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line
036, Page 449

JLabel, create using HTML text, Listing 22-10, TextDemo/TextDemo.java, Line 037, Page 490

JLabel, creating, Listing 21-1, SwingApplet/SwingApplet.java, Line 006, Page 438

JList list demonstration, Listing 22-11, ListDemo/ListDemo.java, Line 001, Page 492

JList, create a list of string items, Listing 22-11, ListDemo/ListDemo.java, Line 029, Page 492

Job.java, Listing 19-7, LockDemo/Job.java, Line 001, Page 391

JPanel objects, creating, Listing 21-5, BorderDemo/BorderDemo.java, Line 005, Page 454

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

518

JPanel, creating as a Swing component container, Listing 21-2, SwingApp/SwingApp.java, Line
007, Page 442

JToggleButton, create with icon, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 028, Page
466

Keypress, method to wait for, Listing 19-4, Primes/Primes.java, Line 056, Page 377

LabelDemo.java, Listing 22-8, LabelDemo/LabelDemo.java, Line 001, Page 485

Labels, declaring, Listing 5-5, LabelDemo/LabelDemo.java, Line 004, Page 76

less-than operator, Listing 5-2, WhileCount/WhileCount.java, Line 004, Page 74

Less-than-or-equal and greater-than-or-equal operators, Listing 8-16, ChRadix/ChRadix.java,
Line 006, Page 152

LinkedList methods (see also Collection, List), Listing 15-3, LinkedList.txt, Line 001, Page 279

LinkedList.txt, Listing 15-3, LinkedList.txt, Line 001, Page 279

LinkedListDemo.java, Listing 15-10, LinkedListDemo/LinkedListDemo.java, Line 001, Page
292

List interface methods not also in Collection, Listing 15-1, List.txt, Line 001, Page 277

List methods, Listing 10-13, ArraysList.txt, Line 001, Page 211

List.txt, Listing 15-1, List.txt, Line 001, Page 277

ListDemo.java, Listing 22-11, ListDemo/ListDemo.java, Line 001, Page 492

ListIterator interface methods, Listing 15-11, ListIterator.txt, Line 001, Page 294

ListIterator.txt, Listing 15-11, ListIterator.txt, Line 001, Page 294

Literal integer values, Listing 4-4, IntDemo/IntDemo.java, Line 014, Page 52

Load an icon image GIF file, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

Loading all available fonts, Listing 23-3, FontDemo/FontDemo.java, Line 063, Page 521

LockDemo.java, Listing 19-10, LockDemo/LockDemo.java, Line 001, Page 399

Long wrapper class constructors, Listing 9-20, Long.txt, Line 001, Page 181

Long wrapper class methods, Listing 9-20, Long.txt, Line 005, Page 181

Long wrapper class property methods, Listing 9-20, Long.txt, Line 018, Page 181

Long wrapper class public declarations, Listing 9-20, Long.txt, Line 001, Page 181

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

519

Long.txt, Listing 9-20, Long.txt, Line 001, Page 181

Look and feel, setting the system, Listing 21-2, SwingApp/SwingApp.java, Line 017, Page 442

Look-and-feel, best choices, Listing 22-14, ToolDemo/ToolDemo.java, Line 095, Page 504

Map interface declarations, Listing 17-1, Map.txt, Line 001, Page 330

Map.Entry inner interface, Listing 17-5, Map.Entry.txt, Line 001, Page 338

Map.Entry interface, using to access a Map container's objects, Listing 17-4,
SymbolMap/SymbolMap.java, Line 010, Page 334

Map.Entry.txt, Listing 17-5, Map.Entry.txt, Line 001, Page 338

Map.txt, Listing 17-1, Map.txt, Line 001, Page 330

Math class constants, Listing 9-1, Math.txt, Line 004, Page 159

Math class constructor, Listing 9-1, Math.txt, Line 001, Page 159

Math class methods, Listing 9-1, Math.txt, Line 008, Page 159

Math class public methods, Listing 9-1, Math.txt, Line 001, Page 159

Math.txt, Listing 9-1, Math.txt, Line 001, Page 159

MediaTracker, using to load image, Listing 23-4, ShowPic/ShowPic.java, Line 014, Page 530

Menus, creating menu bar, menu, and menu item, Listing 21-3,
SwingMenuDemo/SwingMenuDemo.java, Line 020, Page 449

Menus, specifying an action listener for, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 028, Page 449

Menus, variables used in creating, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line
009, Page 449

Message dialog demonstration, Listing 22-4, MessageDemo/MessageDemo.java, Line 001, Page
475

MessageDemo.java, Listing 22-4, MessageDemo/MessageDemo.java, Line 001, Page 475

Method for finding a SortedSet object successor, Listing 16-8, Successor/Successor.java, Line
006, Page 323

Method for returning an inclusive SortedSet subset, Listing 16-8, Successor/Successor.java, Line
015, Page 323

Methods.java, Listing 6-4, Methods/Methods.java, Line 001, Page 89

Minimal AWT application, Listing 20-2, SimpleApp/SimpleApp.java, Line 001, Page 408

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

520

Minimum and maximum character radix, Listing 8-16, ChRadix/ChRadix.java, Line 003, Page
152

MinMax.java, Listing 9-3, MinMax/MinMax.java, Line 001, Page 162

MonthNames.java, Listing 8-6, MonthNames/MonthNames.java, Line 001, Page 133

MouseXY.java, Listing 20-4, MouseXY/MouseXY.java, Line 001, Page 416

Multiline C-style comments, Listing 4-2, NoComment/NoComment.java, Line 001, Page 44

Multiple container iterations, Listing 17-7, Dictionary/Dictionary.java, Line 009, Page 342

Nested try blocks, Listing 7-3, NestedTry/NestedTry.java, Line 009, Page 111

NestedTry.java, Listing 7-3, NestedTry/NestedTry.java, Line 001, Page 111

NoComment.java, Listing 4-2, NoComment/NoComment.java, Line 001, Page 44

NullString.java, Listing 8-2, NullString/NullString.java, Line 001, Page 126

Number of objects in a container, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 011,
Page 272

NumberFormatException, Listing 9-5, PowerDemo/PowerDemo.java, Line 012, Page 163

ObjectArray.java, Listing 10-3, ObjectArray/ObjectArray.java, Line 001, Page 194

Offscreen images, create and display using threaded code, Listing 23-5, Offscreen/Offscreen.java,
Line 001, Page 536

Offscreen.java, Listing 23-5, Offscreen/Offscreen.java, Line 001, Page 536

OutputDemo.java, Listing 6-7, OutputDemo/OutputDemo.java, Line 001, Page 95

Overload.java, Listing 6-6, Overload/Overload.java, Line 001, Page 92

Overloaded methods, calling, Listing 6-6, Overload/Overload.java, Line 019, Page 92

Overloaded methods, writing, Listing 6-6, Overload/Overload.java, Line 001, Page 92

Overloading constructors, Listing 15-13, StackDemo/Stack.java, Line 009, Page 303

Overloading methods using parameters, Listing 6-6, Overload/Overload.java, Line 001, Page 92

Overriding an inherited method, Listing 11-2, ProtectedData/ProtectedData.java, Line 024, Page
216

Overriding the paint() method, Listing 23-1, GraphicsApp/GraphicsApp.java, Line 022, Page 512

PackageTest.java, Listing 13-4, PackageTest/PackageTest.java, Line 001, Page 255

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

521

ParseFloat.java, Listing 9-25, ParseFloat/ParseFloat.java, Line 001, Page 184

ParseTree.java, Listing 16-6, ParseTree/ParseTree.java, Line 001, Page 321

ParseWords.java, Listing 16-4, ParseWords/ParseWords.java, Line 001, Page 317

Parsing a string to an integer, Listing 9-5, PowerDemo/PowerDemo.java, Line 008, Page 163

Parsing strings to floating point values, Listing 9-25, ParseFloat/ParseFloat.java, Line 001, Page
184

Parsing words in a text file, Listing 16-6, ParseTree/ParseTree.java, Line 004, Page 321

Password.java, Listing 22-9, Password/Password.java, Line 001, Page 487

Perform action for a GUI object (a button) in a Panel, Listing 20-7, ColorApp/ColorApp.java,
Line 019, Page 426

Popup menus, Listing 22-13, PopupDemo/PopupDemo.java, Line 001, Page 499

PopupDemo.java, Listing 22-13, PopupDemo/PopupDemo.java, Line 001, Page 499

Postfix increment (++) operator, Listing 5-2, WhileCount/WhileCount.java, Line 005, Page 74

PowerDemo.java, Listing 9-5, PowerDemo/PowerDemo.java, Line 001, Page 163

Prevent user from resizing a JFrame window, Listing 22-9, Password/Password.java, Line 039,
Page 487

Preventing class instantiation, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 009, Page 105

Preventing illegal container operations, Listing 15-13, StackDemo/Stack.java, Line 026, Page 303

Prime numbers, computing in the background, Listing 19-4, Primes/Primes.java, Line 043, Page
377

Prime numbers, finding, Listing 19-4, Primes/Primes.java, Line 014, Page 377

Primes.java, Listing 19-4, Primes/Primes.java, Line 001, Page 377

Printing an exception stack trace, Listing 7-4, StackTrace/StackTrace.java, Line 012, Page 113

Printing today's date, Listing 6-2, DateDemo/DateDemo.java, Line 007, Page 85

Private constructors, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 009, Page 105

Private synchronized method and server threads, Listing 19-8, LockDemo/Server.java, Line 016,
Page 394

ProtectedData.java, Listing 11-2, ProtectedData/ProtectedData.java, Line 001, Page 216

Public class method, example, Listing 6-1, DateObject/DateObject.java, Line 006, Page 81

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

522

Public methods, writing, Listing 6-1, DateObject/DateObject.java, Line 012, Page 81

Pulldown menus in Swing applications, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 001, Page 449

Queue class with synchronized methods, Listing 19-6, LockDemo/Queue.java, Line 001, Page
389

Queue.java, Listing 19-6, LockDemo/Queue.java, Line 001, Page 389

Radio buttons, adding to a group, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 053, Page
469

Radio buttons, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

RandGen.java, Listing 9-11, RandGen/RandGen.java, Line 001, Page 169

Random class constructors, Listing 9-10, Random.txt, Line 001, Page 168

Random class methods, Listing 9-10, Random.txt, Line 005, Page 168

Random class public methods, Listing 9-10, Random.txt, Line 001, Page 168

Random values, converting to integer, Listing 9-9, RandomDemo/RandomDemo.java, Line 008,
Page 167

Random.txt, Listing 9-10, Random.txt, Line 001, Page 168

RandomBytes.java, Listing 9-12, RandomBytes/RandomBytes.java, Line 001, Page 171

RandomColor.java, Listing 20-6, RandomColor/RandomColor.java, Line 001, Page 425

RandomDemo.java, Listing 9-9, RandomDemo/RandomDemo.java, Line 001, Page 167

Randomizing a byte array, Listing 9-12, RandomBytes/RandomBytes.java, Line 019, Page 171

RandomSeed.java, Listing 9-13, RandomSeed/RandomSeed.java, Line 001, Page 172

Read typed data from a file, Listing 24-8, ReadData/ReadData.java, Line 001, Page 577

ReadData.java, Listing 24-8, ReadData/ReadData.java, Line 001, Page 577

Reading a single character, Listing 6-8, InputDemo/InputDemo.java, Line 006, Page 96

Reading a string, Listing 6-8, InputDemo/InputDemo.java, Line 013, Page 96

Reading a string from System.in, Listing 24-1, ReadLine/ReadLine.java, Line 001, Page 557

Reading a user-entered string, Listing 8-18, InputString/InputString.java, Line 008, Page 156

Reading lines from a text file, Listing 24-6, ReadText/ReadText.java, Line 001, Page 573

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

523

Reading typed data using random access, Listing 24-10, ReadRandom/ReadRandom.java, Line
001, Page 580

ReadLine.java, Listing 24-1, ReadLine/ReadLine.java, Line 001, Page 557

ReadRandom.java, Listing 24-10, ReadRandom/ReadRandom.java, Line 001, Page 580

ReadText.java, Listing 24-6, ReadText/ReadText.java, Line 001, Page 573

Refering to friendly declarations in the same package, Listing 13-2,
PackageTest/stuff/TClass2.java, Line 003, Page 254

Remainder.java, Listing 9-6, Remainder/Remainder.java, Line 001, Page 164

Reseeding a Random object, Listing 9-13, RandomSeed/RandomSeed.java, Line 001, Page 172

Respond to a list selection event, Listing 22-11, ListDemo/ListDemo.java, Line 039, Page 492

Responding to check box selection, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 113, Page
469

Responding to popup menu command selections, Listing 22-13, PopupDemo/PopupDemo.java,
Line 073, Page 499

Right and wrong ways to implement clone(), Listing 12-5, CloneDemo/CloneDemo.java, Line
018, Page 240

Round.java, Listing 9-7, Round/Round.java, Line 001, Page 165

Runnable class that does its own job in a thread, Listing 19-7, LockDemo/Job.java, Line 001,
Page 391

Runnable.txt, Listing 19-3, Runnable.txt, Line 001, Page 377

SafetyClass.java, Listing 19-5, SafetyClass/SafetyClass.java, Line 001, Page 385

Scrolling an image using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 027, Page 546

Search for HashMap entry by key value, Listing 17-4, SymbolMap/SymbolMap.java, Line 035,
Page 334

Search using binarySearch(), Listing 15-12, BinaryDemo/BinaryDemo.java, Line 035, Page 300

Searching methods, Listing 10-10, ArraysSearch.txt, Line 001, Page 207

Searching with binarySearch(), Listing 15-12, BinaryDemo/BinaryDemo.java, Line 043, Page
300

Serial.java, Listing 6-5, Serial/Serial.java, Line 001, Page 91

Serializing class objects, Listing 6-5, Serial/Serial.java, Line 001, Page 91

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

524

Server class, creating to queue and process jobs, Listing 19-8, LockDemo/Server.java, Line 001,
Page 394

Server.java, Listing 19-8, LockDemo/Server.java, Line 001, Page 394

Set interface methods (see also Collection, SortedSet), Listing 16-1, Set.txt, Line 001, Page 309

Set JPanel layout manager, Listing 21-8, BoxDemo/BoxDemo.java, Line 014, Page 459

Set the location of a Frame object, Listing 20-7, ColorApp/ColorApp.java, Line 032, Page 426

Set the size of a Frame object, Listing 20-7, ColorApp/ColorApp.java, Line 032, Page 426

Set.txt, Listing 16-1, Set.txt, Line 001, Page 309

Short wrapper class constructors, Listing 9-22, Short.txt, Line 001, Page 182

Short wrapper class methods, Listing 9-22, Short.txt, Line 005, Page 182

Short wrapper class public declarations, Listing 9-22, Short.txt, Line 001, Page 182

Short.txt, Listing 9-22, Short.txt, Line 001, Page 182

ShowPic.java, Listing 23-4, ShowPic/ShowPic.java, Line 001, Page 530

Simple Swing applet, Listing 21-1, SwingApplet/SwingApplet.java, Line 001, Page 438

Simple Swing application, Listing 21-2, SwingApp/SwingApp.java, Line 001, Page 442

SimpleApp.java, Listing 20-2, SimpleApp/SimpleApp.java, Line 001, Page 408

SortComparator.java, Listing 10-9, SortComparator/SortComparator.java, Line 001, Page 206

SortedMap interface declarations, Listing 17-2, SortedMap.txt, Line 001, Page 332

SortedMap.txt, Listing 17-2, SortedMap.txt, Line 001, Page 332

SortedSet methods (see also Collection, Set), Listing 16-2, SortedSet.txt, Line 001, Page 311

SortedSet.txt, Listing 16-2, SortedSet.txt, Line 001, Page 311

Sorting a container using Comparator objects, Listing 15-7,
ComparatorDemo/ComparatorDemo.java, Line 026, Page 287

Sorting a List with Collections, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 026,
Page 282

Sorting methods, Listing 10-6, ArraysSort.txt, Line 001, Page 202

Sorting objects in arrays, Listing 10-8, SortObjects/SortObjects.java, Line 001, Page 204

Sorting strings in arrays, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

525

Sorting using a Comparator object, Listing 10-9, SortComparator/SortComparator.java, Line 028,
Page 206

SortObjects.java, Listing 10-8, SortObjects/SortObjects.java, Line 001, Page 204

SortStrings.java, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

Spawning a daemon thread in a run() method, Listing 19-9, LockDemo/Client.java, Line 020,
Page 397

Specifying a Unicode char's hexadecimal value, Listing 8-17, ChType/ChType.java, Line 034,
Page 154

Stack.java, Listing 15-13, StackDemo/Stack.java, Line 001, Page 303

StackDemo.java, Listing 15-14, StackDemo/StackDemo.java, Line 001, Page 306

StackTrace.java, Listing 7-4, StackTrace/StackTrace.java, Line 001, Page 113

Static private data, Listing 6-5, Serial/Serial.java, Line 002, Page 91

String class comparison methods, Listing 8-5, StringMethods.txt, Line 009, Page 131

String class constructors, Listing 8-1, StringConstructors.txt, Line 001, Page 126

String class conversion methods, Listing 8-5, StringMethods.txt, Line 031, Page 131

String class index methods, Listing 8-5, StringMethods.txt, Line 021, Page 131

String class inspection methods, Listing 8-5, StringMethods.txt, Line 001, Page 131

String class value methods, Listing 8-12, StringValue.txt, Line 001, Page 140

StringAppend.java, Listing 8-14, StringAppend/StringAppend.java, Line 001, Page 145

StringBuffer class append methods, Listing 8-13, StringBufferMethods.txt, Line 017, Page 142

StringBuffer class char methods, Listing 8-13, StringBufferMethods.txt, Line 012, Page 142

StringBuffer class constructors, Listing 8-13, StringBufferMethods.txt, Line 001, Page 142

StringBuffer class delete and replace methods, Listing 8-13, StringBufferMethods.txt, Line 029,
Page 142

StringBuffer class insert methods, Listing 8-13, StringBufferMethods.txt, Line 038, Page 142

StringBuffer class length and capacity methods, Listing 8-13, StringBufferMethods.txt, Line 006,
Page 142

StringBuffer class other methods, Listing 8-13, StringBufferMethods.txt, Line 050, Page 142

StringBuffer class substring methods, Listing 8-13, StringBufferMethods.txt, Line 034, Page 142

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

526

StringBufferMethods.txt, Listing 8-13, StringBufferMethods.txt, Line 001, Page 142

StringConstructors.txt, Listing 8-1, StringConstructors.txt, Line 001, Page 126

StringIntern.java, Listing 8-11, StringIntern/StringIntern.java, Line 001, Page 139

StringLocale.java, Listing 8-8, StringLocale/StringLocale.java, Line 001, Page 136

StringMethods.txt, Listing 8-5, StringMethods.txt, Line 001, Page 131

StringTrimmer.java, Listing 8-10, StringTrimmer/StringTrimmer.java, Line 001, Page 139

StringValue.txt, Listing 8-12, StringValue.txt, Line 001, Page 140

Substring, creating using indexes, Listing 8-6, MonthNames/MonthNames.java, Line 010, Page
133

SubTree.java, Listing 16-7, SubTree/SubTree.java, Line 001, Page 322

Successor.java, Listing 16-8, Successor/Successor.java, Line 001, Page 323

Swing JFrame constructor, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 007,
Page 449

Swing toolbars and actions, Listing 22-14, ToolDemo/ToolDemo.java, Line 001, Page 504

SwingApp.java, Listing 21-2, SwingApp/SwingApp.java, Line 001, Page 442

SwingApplet.java, Listing 21-1, SwingApplet/SwingApplet.java, Line 001, Page 438

SwingMenuDemo.java, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 001, Page
449

SwingPic.java, Listing 23-7, SwingPic/SwingPic.java, Line 001, Page 546

switch case statements, Listing 5-1, Switcher/Switcher.java, Line 005, Page 72

switch default statements, Listing 5-1, Switcher/Switcher.java, Line 015, Page 72

Switch statement, Listing 6-4, Methods/Methods.java, Line 009, Page 89

Switch statement and exceptions, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 011, Page
109

switch statements, Listing 5-1, Switcher/Switcher.java, Line 004, Page 72

Switcher.java, Listing 5-1, Switcher/Switcher.java, Line 001, Page 72

Sychronized method, declaring, Listing 19-6, LockDemo/Queue.java, Line 011, Page 389

SymbolMap.java, Listing 17-4, SymbolMap/SymbolMap.java, Line 001, Page 334

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

527

Synchonization client-server demonstration, Listing 19-10, LockDemo/LockDemo.java, Line 001,
Page 399

TClass1.java, Listing 13-1, PackageTest/stuff/TClass1.java, Line 001, Page 253

TClass2.java, Listing 13-2, PackageTest/stuff/TClass2.java, Line 001, Page 254

TClass3.java, Listing 13-3, PackageTest/morestuff/TClass3.java, Line 001, Page 254

TContainer.java, Listing 11-4, AbstractDemo/TContainer.java, Line 001, Page 221

TContainerInterface.java, Listing 12-2, InterfaceDemo/TContainerInterface.java, Line 001, Page
234

TestClass.java, Listing 10-5, ArrayCopy/TestClass.java, Line 001, Page 197

Text, painting with a font, Listing 23-3, FontDemo/FontDemo.java, Line 027, Page 521

TextDemo.java, Listing 22-10, TextDemo/TextDemo.java, Line 001, Page 490

The Runnable interface, Listing 19-3, Runnable.txt, Line 001, Page 377

TheInterface.java, Listing 12-1, TheInterface/TheInterface.java, Line 001, Page 232

Thread class constructors, Listing 19-1, Thread.txt, Line 006, Page 368

Thread class deprecated methods, Listing 19-1, Thread.txt, Line 047, Page 368

Thread class public declarations, Listing 19-1, Thread.txt, Line 001, Page 368

Thread class public fields, Listing 19-1, Thread.txt, Line 001, Page 368

Thread class public methods, Listing 19-1, Thread.txt, Line 015, Page 368

Thread class, extending, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 003, Page 372

Thread, starting in a constructor, Listing 19-7, LockDemo/Job.java, Line 007, Page 391

Thread.txt, Listing 19-1, Thread.txt, Line 001, Page 368

ThreadDemo.java, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 001, Page 372

Threaded programming demonstration, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 001,
Page 372

Threads, notifying of a state change, Listing 19-7, LockDemo/Job.java, Line 040, Page 391

Throwing an exception object, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 029, Page 105

TMyObject.java, Listing 11-5, AbstractDemo/TMyObject.java, Line 001, Page 224

TObject.java, Listing 11-3, AbstractDemo/TObject.java, Line 001, Page 220

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

528

Toggle a button's icon using a ChangeListener, Listing 22-2, ToggleDemo/ToggleDemo.java,
Line 031, Page 466

ToggleDemo.java, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 001, Page 466

Toolbar, creating using Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 081, Page
504

ToolDemo.java, Listing 22-14, ToolDemo/ToolDemo.java, Line 001, Page 504

Top-level frame, application, and content plane, Listing 21-2, SwingApp/SwingApp.java, Line
024, Page 442

TreeMap constructors (see also Map and SortedMap interfaces), Listing 17-6, TreeMap.txt, Line
001, Page 341

TreeMap.txt, Listing 17-6, TreeMap.txt, Line 001, Page 341

TreeSet constructors (see also Set and SortedSet), Listing 16-5, TreeSet.txt, Line 001, Page 319

TreeSet.txt, Listing 16-5, TreeSet.txt, Line 001, Page 319

Triangle.java, Listing 10-2, Triangle/Triangle.java, Line 001, Page 192

Triangular (variable-length multidimensional) arrays, Listing 10-2, Triangle/Triangle.java, Line
001, Page 192

Trim leading and trailing blanks from a str ing, Listing 8-10, StringTrimmer/StringTrimmer.java,
Line 005, Page 139

Type-casting and character input, Listing 6-8, InputDemo/InputDemo.java, Line 010, Page 96

UnsupportedEncodingException, Listing 8-4, CharEncoding/CharEncoding.java, Line 001, Page
130

Use File class to create a filename directory, Listing 24-2, Directory/Directory.java, Line 001,
Page 561

Use File class to list a directory, Listing 24-2, Directory/Directory.java, Line 038, Page 561

Use file streams to copy a file, Listing 24-5, CopyFile/CopyFile.java, Line 001, Page 568

Use HTML to format a label, Listing 22-8, LabelDemo/LabelDemo.java, Line 036, Page 485

Using a Boolean object, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 004, Page 174

Using a LinkedList container, Listing 15-10, LinkedListDemo/LinkedListDemo.java, Line 001,
Page 292

Using an abstract class, Listing 11-4, AbstractDemo/TContainer.java, Line 001, Page 221

Using an array as a List object, Listing 10-14, ArraysList/ArraysList.java, Line 001, Page 211

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

529

Using an Iterator to access a SortedSet container, Listing 16-7, SubTree/SubTree.java, Line 006,
Page 322

Using an Iterator to remove all objects in a container, Listing 15-9,
IteratorDemo/IteratorDemo.java, Line 042, Page 289

Using exceptions to report stack errors, Listing 15-13, StackDemo/Stack.java, Line 016, Page 303

Using inner JPanels for appearance, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 087, Page
469

Using nested panels for a neat appearance, Listing 22-3, ButtonDemo/ButtonDemo.java, Line
042, Page 469

Using the Boolean wrapper class, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 001,
Page 174

Using the Math class abs() method, Listing 9-2, AbsValue/AbsValue.java, Line 001, Page 161

Using the Math class ceil() and floor() methods, Listing 9-4, CeilFloor/CeilFloor.java, Line 001,
Page 162

Using the Math class cos() method, Listing 9-8, CosDemo/CosDemo.java, Line 001, Page 166

Using the Math class IEEERemainder() method, Listing 9-6, Remainder/Remainder.java, Line
001, Page 164

Using the Math class min() and max() methods, Listing 9-3, MinMax/MinMax.java, Line 001,
Page 162

Using the Math class pow() method, Listing 9-5, PowerDemo/PowerDemo.java, Line 001, Page
163

Using the Math class random() method, Listing 9-9, RandomDemo/RandomDemo.java, Line 001,
Page 167

Using the Math class rint() method, Listing 9-7, Round/Round.java, Line 004, Page 165

Using the Math class round() methods, Listing 9-7, Round/Round.java, Line 005, Page 165

Using the Math class rounding methods, Listing 9-7, Round/Round.java, Line 001, Page 165

Using the Random.nextBytes() method, Listing 9-12, RandomBytes/RandomBytes.java, Line 001,
Page 171

Using the Random.setSeed() method, Listing 9-13, RandomSeed/RandomSeed.java, Line 010,
Page 172

Using this in a constructor to avoid a name conflict, Listing 10-3, ObjectArray/ObjectArray.java,
Line 004, Page 194

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

530

Using type-casting in a compareTo() method, Listing 10-8, SortObjects/SortObjects.java, Line
011, Page 204

Using type-casting with containers, Listing 16-7, SubTree/SubTree.java, Line 027, Page 322

Using while to read new line, Listing 6-8, InputDemo/InputDemo.java, Line 010, Page 96

VarDemo.java, Listing 4-3, VarDemo/VarDemo.java, Line 001, Page 49

Variable of type float, Listing 9-25, ParseFloat/ParseFloat.java, Line 006, Page 184

Wait for Enter key while background process runs, Listing 19-2, ThreadDemo/ThreadDemo.java,
Line 050, Page 372

Welcome.java, Listing 4-1, Welcome/Welcome.java, Line 001, Page 38

while statement, Listing 5-2, WhileCount/WhileCount.java, Line 004, Page 74

WhileCount.java, Listing 5-2, WhileCount/WhileCount.java, Line 001, Page 74

Write lines of text to a file, Listing 24-9, WriteText/WriteText.java, Line 001, Page 578

WriteData.java, Listing 24-7, WriteData/WriteData.java, Line 001, Page 575

WriteText.java, Listing 24-9, WriteText/WriteText.java, Line 001, Page 578

Writing a class method, Listing 6-4, Methods/Methods.java, Line 003, Page 89

Writing a compareTo() method, Listing 10-8, SortObjects/SortObjects.java, Line 011, Page 204

Writing a final class, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 008, Page 105

Writing a finally block for critical code, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 031,
Page 109

Writing a string to the standard output, Listing 9-25, ParseFloat/ParseFloat.java, Line 001, Page
184

Writing a try block, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 042, Page 105

Writing extended Applet class, Listing 20-3, BackColor/BackColor.java, Line 005, Page 414

Writing typed data to a file, Listing 24-7, WriteData/WriteData.java, Line 001, Page 575

Yes-No dialogs, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 023, Page 478

YesNoDemo.java, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 001, Page 478

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

531

Summary
* Use this printed copy of the CD-ROM's online index to find solutions to problems

by name.

Chapter 26 Just Click! Solutions by Subject
In this chapter is a copy of the online "Just Click! Solutions by Subject" index for use
when you don't have access to your computer. To view this index online, open the
bysubj.html file on the CD-ROM using your favorite Web browser. You can then click
on any entry to go directly to that line in the listing file. For reference, the listing page
numbers are also printed here and shown online. Note the line number before clicking or
turning the page — this will help you locate the exact solution you need. See Chapter 2,
"Using the Just Click! Solutions Indexes," for more information about using the by name
and by subject indexes online.

Solutions by Subject
***Production: Beginning here, each GX paragraph should be 1 point size smaller
than usual. Thanks.***

Access rules

Accessing private data, Listing 6-5, Serial/Serial.java, Line 009, Page 91

Declaring protected instance variables, Listing 11-2, ProtectedData/ProtectedData.java, Line 001,
Page 216

Extending a class with protected data, Listing 11-2, ProtectedData/ProtectedData.java, Line 016,
Page 216

Hiding data using private access specifier, Listing 11-1, DataHiding/DataHiding.java, Line 001,
Page 214

Private constructors, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 009, Page 105

Public class method, example, Listing 6-1, DateObject/DateObject.java, Line 006, Page 81

Static private data, Listing 6-5, Serial/Serial.java, Line 002, Page 91

Applet class

Animation in applets, Listing 23-8, Animation/Animation.java, Line 004, Page 547

Applet, extending, Listing 20-1, AppletADay/AppletADay.java, Line 005, Page 405

Initializing applet in threaded code, Listing 23-8, Animation/Animation.java, Line 019, Page 547

Writing extended Applet class, Listing 20-3, BackColor/BackColor.java, Line 005, Page 414

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

532

Applets

ActionListener class, implementing, Listing 20-5, Delegate/Delegate.java, Line 011, Page 418

Applet, creating a simple AWT applet, Listing 20-1, AppletADay/AppletADay.java, Line 001,
Page 405

BorderLayout demonstration, Listing 21-5, BorderDemo/BorderDemo.java, Line 001, Page 454

BoxLayout demonstration, Listing 21-8, BoxDemo/BoxDemo.java, Line 001, Page 459

Constructing an AWT applet using a Listener object, Listing 20-5, Delegate/Delegate.java, Line
025, Page 418

Delegation event model using buttons, Listing 20-5, Delegate/Delegate.java, Line 001, Page 418

FlowLayout demonstration, Listing 21-4, FlowDemo/FlowDemo.java, Line 001, Page 453

GridBagLayout demonstration, Listing 21-7, GridBagDemo/GridBagDemo.java, Line 001, Page
456

GridLayout demonstration, Listing 21-6, GridDemo/GridDemo.java, Line 001, Page 455

Simple Swing applet, Listing 21-1, SwingApplet/SwingApplet.java, Line 001, Page 438

ArrayList class

ArrayList methods (see also Collection, List), Listing 15-2, ArrayList.txt, Line 001, Page 278

Constructing an ArrayList container, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line
015, Page 282

Import a container class (ArrayList), Listing 14-2, ContainerDemo/ContainerDemo.java, Line
001, Page 272

Iterators and the ArrayList class, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 042, Page
289

Searching with binarySearch(), Listing 15-12, BinaryDemo/BinaryDemo.java, Line 043, Page
300

Arrays class

Calling the sort() method, Listing 10-7, SortStrings/SortStrings.java, Line 016, Page 203

Equality testing methods, Listing 10-11, ArraysEqual.txt, Line 001, Page 208

Filling methods, Listing 10-12, ArraysFill.txt, Line 001, Page 209

Implementing Comparator, Listing 10-9, SortComparator/SortComparator.java, Line 004, Page
206

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

533

Importing the Arrays class, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

List methods, Listing 10-13, ArraysList.txt, Line 001, Page 211

Searching methods, Listing 10-10, ArraysSearch.txt, Line 001, Page 207

Sorting methods, Listing 10-6, ArraysSort.txt, Line 001, Page 202

Sorting objects in arrays, Listing 10-8, SortObjects/SortObjects.java, Line 001, Page 204

Sorting strings in arrays, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

Sorting using a Comparator object, Listing 10-9, SortComparator/SortComparator.java, Line 028,
Page 206

Arrays

Array boundary exceptions, Listing 10-1, ArrayBounds/ArrayBounds.java, Line 001, Page 190

Catching ArrayIndexOutOfBoundsException, Listing 10-1, ArrayBounds/ArrayBounds.java,
Line 004, Page 190

Cloning array contents, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 024, Page 196

Cloning arrays via Object.clone(), Listing 10-4, ArrayCopy/ArrayCopy.java, Line 024, Page 196

Construct 8-bit ASCII character byte array, Listing 8-4, CharEncoding/CharEncoding.java, Line
006, Page 130

Construct array of class objects, Listing 10-3, ObjectArray/ObjectArray.java, Line 015, Page 194

Constructing an array of char, Listing 8-3, CharArray/CharArray.java, Line 004, Page 128

Convert an array to a List object, Listing 10-14, ArraysList/ArraysList.java, Line 010, Page 211

Convert byte array to a String using a character encoding, Listing 8-4,
CharEncoding/CharEncoding.java, Line 009, Page 130

Copying array contents, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 015, Page 196

Copying array references, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 007, Page 196

Copying arrays via System.arraycopy(), Listing 10-4, ArrayCopy/ArrayCopy.java, Line 015,
Page 196

Sorting objects in arrays, Listing 10-8, SortObjects/SortObjects.java, Line 001, Page 204

Sorting strings in arrays, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

Triangular (variable-length multidimensional) arrays, Listing 10-2, Triangle/Triangle.java, Line
001, Page 192

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

534

Using an array as a Lis t object, Listing 10-14, ArraysList/ArraysList.java, Line 001, Page 211

AWT

ActionListener class, implementing, Listing 20-5, Delegate/Delegate.java, Line 011, Page 418

Add Button to AWT applet, Listing 20-3, BackColor/BackColor.java, Line 009, Page 414

Adding a button to a Panel and set its listener, Listing 20-7, ColorApp/ColorApp.java, Line 012,
Page 426

Animating bitmap images, Listing 23-8, Animation/Animation.java, Line 001, Page 547

Applet, extending, Listing 20-1, AppletADay/AppletADay.java, Line 005, Page 405

AWT deprecated handleEvent() method, Listing 20-4, MouseXY/MouseXY.java, Line 026, Page
416

AWT old inheritance event model, Listing 20-4, MouseXY/MouseXY.java, Line 001, Page 416

AWT's old inheritance model, Listing 20-3, BackColor/BackColor.java, Line 001, Page 414

Button objects, creating, Listing 20-5, Delegate/Delegate.java, Line 007, Page 418

Constructing an AWT applet using a Listener object, Listing 20-5, Delegate/Delegate.java, Line
025, Page 418

Create listener using an anonymous class, Listing 20-6, RandomColor/RandomColor.java, Line
014, Page 425

Delegation event model AWT application, Listing 20-7, ColorApp/ColorApp.java, Line 001,
Page 426

Delegation event model using anonymous class, Listing 20-6, RandomColor/RandomColor.java,
Line 001, Page 425

Delegation event model using buttons, Listing 20-5, Delegate/Delegate.java, Line 001, Page 418

Deprecated AWT action() method, Listing 20-3, BackColor/BackColor.java, Line 016, Page 414

End program when window closes, Listing 20-7, ColorApp/ColorApp.java, Line 037, Page 426

Frames, creating, Listing 20-7, ColorApp/ColorApp.java, Line 032, Page 426

Image loading and display, Listing 23-4, ShowPic/ShowPic.java, Line 001, Page 530

MediaTracker, using to load image, Listing 23-4, ShowPic/ShowPic.java, Line 014, Page 530

Minimal AWT application, Listing 20-2, SimpleApp/SimpleApp.java, Line 001, Page 408

Perform action for a GUI object (a button) in a Panel, Listing 20-7, ColorApp/ColorApp.java,
Line 019, Page 426

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

535

Set the location of a Frame object, Listing 20-7, ColorApp/ColorApp.java, Line 032, Page 426

Set the size of a Frame object, Listing 20-7, ColorApp/ColorApp.java, Line 032, Page 426

BitSet class

Bits, setting in a BitSet container, Listing 18-3, BitSetDemo/BitSetDemo.java, Line 013, Page
358

BitSet constructors and methods, Listing 18-2, BitSet.txt, Line 001, Page 356

BitSet containers, creating, Listing 18-3, BitSetDemo/BitSetDemo.java, Line 009, Page 358

Exclusive-or operations on a BitSet container, Listing 18-3, BitSetDemo/BitSetDemo.java, Line
018, Page 358

Boolean class

Getting a boolean property value, Listing 9-16, GetProperty/GetProperty.java, Line 013, Page
176

Using a Boolean object, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 004, Page 174

ButtonGroup

Creating a ButtonGroup object, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Radio buttons, adding to a group, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 053, Page
469

Buttons

Add button to applet pane, Listing 21-8, BoxDemo/BoxDemo.java, Line 007, Page 459

Add Button to AWT applet, Listing 20-3, BackColor/BackColor.java, Line 009, Page 414

Create button using an icon image, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

Demonstrate a two-state toggle button, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 001,
Page 466

Display icon images in JButton objects, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001,
Page 464

JToggleButton, create with icon, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 028, Page
466

Toggle a button's icon using a ChangeListener, Listing 22-2, ToggleDemo/ToggleDemo.java,
Line 031, Page 466

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

536

ChangeListener

Responding to check box selection, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 113, Page
469

Toggle a button's icon using a ChangeListener, Listing 22-2, ToggleDemo/ToggleDemo.java,
Line 031, Page 466

Characters

Character class "is" methods, Listing 8-15, Character.txt, Line 015, Page 150

Character class constructor, Listing 8-15, Character.txt, Line 001, Page 150

Character class methods, Listing 8-15, Character.txt, Line 004, Page 150

Character class other methods, Listing 8-15, Character.txt, Line 034, Page 150

Character-class type constants, Listing 8-17, ChType/ChType.java, Line 008, Page 154

Constructing an array of char, Listing 8-3, CharArray/CharArray.java, Line 004, Page 128

Determine a char's integer Unicode value, Listing 8-17, ChType/ChType.java, Line 023, Page
154

Getting a radix digit for a character, Listing 8-16, ChRadix/ChRadix.java, Line 006, Page 152

Getting the type of a character, Listing 8-17, ChType/ChType.java, Line 005, Page 154

Inputting a character, Listing 19-4, Primes/Primes.java, Line 046, Page 377

Minimum and maximum character radix, Listing 8-16, ChRadix/ChRadix.java, Line 003, Page
152

Reading a single character, Listing 6-8, InputDemo/InputDemo.java, Line 006, Page 96

Check boxes

Check boxes, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Responding to check box selection, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 113, Page
469

Classes

BitSet constructors and methods, Listing 18-2, BitSet.txt, Line 001, Page 356

Call an object's public class method, Listing 6-1, DateObject/DateObject.java, Line 026, Page 81

Calling a superclass constructor, Listing 11-2, ProtectedData/ProtectedData.java, Line 020, Page
216

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

537

Construct array of class objects, Listing 10-3, ObjectArray/ObjectArray.java, Line 015, Page 194

Create an object of a class using new, Listing 6-1, DateObject/DateObject.java, Line 021, Page
81

Declare a class, Listing 6-1, DateObject/DateObject.java, Line 002, Page 81

Declaring an abstract class, Listing 11-3, AbstractDemo/TObject.java, Line 001, Page 220

Delegation event model using anonymous class, Listing 20-6, RandomColor/RandomColor.java,
Line 001, Page 425

Demonstrate using an abstract class, Listing 11-6, AbstractDemo/AbstractDemo.java, Line 001,
Page 225

Extending a class, Listing 6-3, DateShow/DateShow.java, Line 003, Page 86

Extending a class with protected data, Listing 11-2, ProtectedData/ProtectedData.java, Line 016,
Page 216

Extending the Exception c lass, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 002, Page 109

HashMap constructors and method (see also Map), Listing 17-3, HashMap.txt, Line 001, Page
333

HashSet constructors (see also Set), Listing 16-3, HashSet.txt, Line 001, Page 315

Implementing an abstract class, Listing 11-5, AbstractDemo/TMyObject.java, Line 001, Page 224

Overriding an inherited method, Listing 11-2, ProtectedData/ProtectedData.java, Line 024, Page
216

Preventing class instantiation, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 009, Page 105

Public class method, example, Listing 6-1, DateObject/DateObject.java, Line 006, Page 81

Serializing class objects, Listing 6-5, Serial/Serial.java, Line 001, Page 91

TreeSet constructors (see also Set and SortedSet), Listing 16-5, TreeSet.txt, Line 001, Page 319

Using an abstract class, Listing 11-4, AbstractDemo/TContainer.java, Line 001, Page 221

Using this in a constructor to avoid a name conflict, Listing 10-3, ObjectArray/ObjectArray.java,
Line 004, Page 194

Writing a class method, Listing 6-4, Methods/Methods.java, Line 003, Page 89

Writing a final class, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 008, Page 105

Cloneable

Calling Object.clone(), Listing 12-5, CloneDemo/CloneDemo.java, Line 051, Page 240

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

538

Implementing the Cloneable interface, Listing 12-5, CloneDemo/CloneDemo.java, Line 002,
Page 240

Right and wrong ways to implement clone(), Listing 12-5, CloneDemo/CloneDemo.java, Line
018, Page 240

Cloning

Cloning arrays via Object.clone(), Listing 10-4, ArrayCopy/ArrayCopy.java, Line 024, Page 196

Copying arrays via System.arraycopy(), Listing 10-4, ArrayCopy/ArrayCopy.java, Line 015,
Page 196

Collection interface

Collection interface methods, Listing 14-1, Collection.txt, Line 001, Page 270

Importing and using Collection, Listing 15-13, StackDemo/Stack.java, Line 001, Page 303

Collections class

binarySearch() method preparations, Listing 15-12, BinaryDemo/BinaryDemo.java, Line 037,
Page 300

Collections utility methods, Listing 18-1, Collections.txt, Line 001, Page 347

Search using binarySearch(), Listing 15-12, BinaryDemo/BinaryDemo.java, Line 035, Page 300

Searching with binarySearch(), Listing 15-12, BinaryDemo/BinaryDemo.java, Line 043, Page
300

Sorting a container using Comparator objects, Listing 15-7,
ComparatorDemo/ComparatorDemo.java, Line 026, Page 287

Combo box

JComboBox demonstration, Listing 22-12, ComboDemo/ComboDemo.java, Line 001, Page 496

JComboBox, create selection list, Listing 22-12, ComboDemo/ComboDemo.java, Line 030, Page
496

Comments

C and C++ style comments, Lis ting 4-2, NoComment/NoComment.java, Line 013, Page 44

C++ style comments, Listing 4-2, NoComment/NoComment.java, Line 009, Page 44

Documentation comments, Listing 4-2, NoComment/NoComment.java, Line 005, Page 44

Multiline C-style comments, Listing 4-2, NoComment/NoComment.java, Line 001, Page 44

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

539

Comparator interface

Comparator "factory" methods, Listing 15-6, ComparatorDemo/Chart.java, Line 025, Page 285

Comparator compare() method, implementing, Listing 15-6, ComparatorDemo/Chart.java, Line
046, Page 285

Comparator interface, implementing, Listing 15-6, ComparatorDemo/Chart.java, Line 001, Page
285

Comparator objects, using to sort, Listing 15-7, ComparatorDemo/ComparatorDemo.java, Line
001, Page 287

Constructing a Comparator object, Listing 10-9, SortComparator/SortComparator.java, Line 026,
Page 206

Creating a private inner Comparator class, Listing 15-6, ComparatorDemo/Chart.java, Line 036,
Page 285

Implementing Comparator, Listing 10-9, SortComparator/SortComparator.java, Line 004, Page
206

Components

Button and check box demonstration, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 001,
Page 469

Check boxes, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Radio buttons, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Constants

Character-class type constants, Listing 8-17, ChType/ChType.java, Line 008, Page 154

Constant fields, declaring, Listing 15-6, ComparatorDemo/Chart.java, Line 004, Page 285

Minimum and maximum character radix, Listing 8-16, ChRadix/ChRadix.java, Line 003, Page
152

Constructor

Calling superclass constructor, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 004, Page 109

Class constructor with parameters, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 002, Page
105

Class constructor, creating, Listing 6-9, FinalDemo/FinalDemo.java, Line 002, Page 98

Overloading constructors, Listing 15-13, StackDemo/Stack.java, Line 009, Page 303

Private constructors, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 009, Page 105

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

540

Swing JFrame constructor, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 007,
Page 449

Thread, starting in a constructor, Listing 19-7, LockDemo/Job.java, Line 007, Page 391

Containers

Adding objects to a List, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 018, Page 282

Adding strings to a container, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 006, Page
272

ArrayList methods (see also Collection, List), Listing 15-2, ArrayList.txt, Line 001, Page 278

Constructing a container object, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 005,
Page 272

Create a HashMap container and insert some associations, Listing 17-4,
SymbolMap/SymbolMap.java, Line 018, Page 334

Create a TreeMap container, Listing 17-7, Dictionary/Dictionary.java, Line 006, Page 342

Creating a Stack class from LinkedList, Listing 15-13, StackDemo/Stack.java, Line 008, Page
303

Demonstrate Stack (extended LinkedList) class, Listing 15-14, StackDemo/StackDemo.java, Line
001, Page 306

Displaying objects in a List container, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line
008, Page 282

Getting strings from a container, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 013,
Page 272

How to create a multiple, nested container object, Listing 17-7, Dictionary/Dictionary.java, Line
001, Page 342

Import a container class (ArrayList), Listing 14-2, ContainerDemo/ContainerDemo.java, Line
001, Page 272

Insertions into nested containers, Listing 17-7, Dictionary/Dictionary.java, Line 029, Page 342

LinkedList methods (see also Collection, List), Listing 15-3, LinkedList.txt, Line 001, Page 279

Multiple container iterations, Listing 17-7, Dictionary/Dictionary.java, Line 009, Page 342

Number of objects in a container, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 011,
Page 272

Parsing words in a text file, Listing 16-6, ParseTree/ParseTree.java, Line 004, Page 321

Parsing words in a text file, Listing 16-4, ParseWords/ParseWords.java, Line 004, Page 317

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

541

Preventing illegal container operations, Listing 15-13, StackDemo/Stack.java, Line 026, Page 303

Queue class with synchronized methods, Listing 19-6, LockDemo/Queue.java, Line 001, Page
389

Search using binarySearch(), Listing 15-12, BinaryDemo/BinaryDemo.java, Line 035, Page 300

Sorting a List with Collections, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 026,
Page 282

TreeMap constructors (see also Map and SortedMap interfaces), Listing 17-6, TreeMap.txt, Line
001, Page 341

Using a LinkedList container, Listing 15-10, LinkedListDemo/LinkedListDemo.java, Line 001,
Page 292

Daemons

Spawning a daemon thread in a run() method, Listing 19-9, LockDemo/Client.java, Line 020,
Page 397

Date class

Date object, creating, Listing 6-2, DateDemo/DateDemo.java, Line 006, Page 85

Printing today's date, Listing 6-2, DateDemo/DateDemo.java, Line 007, Page 85

Dialogs

Confirmation dialogs, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 001, Page 478

File-open and file-save dialogs, Listing 22-6, FileDialog/FileDialog.java, Line 001, Page 480

JColorChooser component demonstration, Listing 22-7, ColorDemo/ColorDemo.java, Line 001,
Page 484

Message dialog demonstration, Listing 22-4, MessageDemo/MessageDemo.java, Line 001, Page
475

Yes-No dialogs, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 023, Page 478

Events

ActionListener class, implementing, Listing 20-5, Delegate/Delegate.java, Line 011, Page 418

AWT deprecated handleEvent() method, Listing 20-4, MouseXY/MouseXY.java, Line 026, Page
416

AWT's old inheritance model, Listing 20-3, BackColor/BackColor.java, Line 001, Page 414

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

542

Create listener using an anonymous class, Listing 20-6, RandomColor/RandomColor.java, Line
014, Page 425

Delegation event model using anonymous class, Listing 20-6, RandomColor/RandomColor.java,
Line 001, Page 425

Delegation event model using buttons, Listing 20-5, Delegate/Delegate.java, Line 001, Page 418

Respond to a list selection event, Listing 22-11, ListDemo/ListDemo.java, Line 039, Page 492

Exceptions

Catching a string-to-integer parsing error, Listing 9-5, PowerDemo/PowerDemo.java, Line 012,
Page 163

Catching a thrown exception object, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 047, Page
105

Catching an IOException error, Listing 8-18, InputString/InputString.java, Line 014, Page 156

Catching IOException errors, Listing 6-8, InputDemo/InputDemo.java, Line 019, Page 96

Creating an exception object, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 014, Page 105

Creating name-only exceptions, Listing 7-3, NestedTry/NestedTry.java, Line 001, Page 111

Declaring a method's checked exceptions, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 012,
Page 105

Extending the Exception class, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 001, Page 105

Extending the Exception class, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 002, Page 109

Importing IOException, Listing 8-18, InputString/InputString.java, Line 001, Page 156

Nested try blocks, Listing 7-3, NestedTry/NestedTry.java, Line 009, Page 111

NumberFormatException, Listing 9-5, PowerDemo/PowerDemo.java, Line 012, Page 163

Preventing illegal container operations, Listing 15-13, StackDemo/Stack.java, Line 026, Page 303

Printing an exception stack trace, Listing 7-4, StackTrace/StackTrace.java, Line 012, Page 113

Throwing an exception object, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 029, Page 105

UnsupportedEncodingException, Listing 8-4, CharEncoding/CharEncoding.java, Line 001, Page
130

Using exceptions to report stack errors, Listing 15-13, StackDemo/Stack.java, Line 016, Page 303

Writing a finally block for critical code, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 031,
Page 109

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

543

Writing a try block, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 042, Page 105

File class

Display information about a File object, Listing 24-3, FileInfo/FileInfo.java, Line 040, Page 563

Use File class to list a directory, Listing 24-2, Directory/Directory.java, Line 038, Page 561

FileInputStream

Use file streams to copy a file, Listing 24-5, CopyFile/CopyFile.java, Line 047, Page 568

Files

Filter filenames using FilenameFilter interface, Listing 24-4, FilterDir/FilterDir.java, Line 001,
Page 565

Get information about a file, Listing 24-3, FileInfo/FileInfo.java, Line 001, Page 563

Parsing words in a text file, Listing 16-4, ParseWords/ParseWords.java, Line 004, Page 317

Parsing words in a text file, Listing 16-6, ParseTree/ParseTree.java, Line 004, Page 321

Read typed data from a file, Listing 24-8, ReadData/ReadData.java, Line 001, Page 577

Reading lines from a text file, Listing 24-6, ReadText/ReadText.java, Line 001, Page 573

Reading typed data using random access, Listing 24-10, ReadRandom/ReadRandom.java, Line
001, Page 580

Use File class to create a filename directory, Listing 24-2, Directory/Directory.java, Line 001,
Page 561

Filters

Image filtering using RGBImageFilter, Listing 23-6, Filter/Filter.java, Line 009, Page 541

Flow control statements

break in a switch case, Listing 5-1, Switcher/Switcher.java, Line 011, Page 72

break statement, Listing 5-5, LabelDemo/LabelDemo.java, Line 012, Page 76

continue statement, Listing 5-5, LabelDemo/LabelDemo.java, Line 010, Page 76

do-while statement, Listing 5-3, DoWhileCount/DoWhileCount.java, Line 004, Page 74

Equality operator in an if statement, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 020, Page
105

for statement, Listing 5-4, ForCount/ForCount.java, Line 004, Page 75

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

544

if statement, Listing 8-6, MonthNames/MonthNames.java, Line 009, Page 133

if statements, examples of nested, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 014, Page
105

Labels, declaring, Listing 5-5, LabelDemo/LabelDemo.java, Line 004, Page 76

switch case statements, Listing 5-1, Switcher/Switcher.java, Line 005, Page 72

switch default statements, Listing 5-1, Switcher/Switcher.java, Line 015, Page 72

Switch statement, Listing 6-4, Methods/Methods.java, Line 009, Page 89

Switch statement and exceptions, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 011, Page
109

switch statements, Listing 5-1, Switcher/Switcher.java, Line 004, Page 72

Using while to read new line, Listing 6-8, InputDemo/InputDemo.java, Line 010, Page 96

while statement, Listing 5-2, WhileCount/WhileCount.java, Line 004, Page 74

Fonts

Loading all available fonts, Listing 23-3, FontDemo/FontDemo.java, Line 063, Page 521

Text, painting with a font, Listing 23-3, FontDemo/FontDemo.java, Line 027, Page 521

Graphics

2D graphics demonstration (application), Listing 23-1, GraphicsApp/GraphicsApp.java, Line 001,
Page 512

Animating bitmap images, Listing 23-8, Animation/Animation.java, Line 001, Page 547

Display a Color in various shades (gradients), Listing 23-2, Gradient/Gradient.java, Line 001,
Page 517

Font demonstration, Listing 23-3, FontDemo/FontDemo.java, Line 001, Page 521

Gradients using the Color class, Listing 23-2, Gradient/Gradient.java, Line 022, Page 517

Image filtering using RGBImageFilter, Listing 23-6, Filter/Filter.java, Line 009, Page 541

Image filtering, color to black-and-white, Listing 23-6, Filter/Filter.java, Line 001, Page 541

Image loading and display, Listing 23-4, ShowPic/ShowPic.java, Line 001, Page 530

Image loading and displaying using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 001,
Page 546

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

545

JColorChooser component demonstration, Listing 22-7, ColorDemo/ColorDemo.java, Line 001,
Page 484

Loading all available fonts, Listing 23-3, FontDemo/FontDemo.java, Line 063, Page 521

MediaTracker, using to load image, Listing 23-4, ShowPic/ShowPic.java, Line 014, Page 530

Offscreen images, create and display using threaded code, Listing 23-5, Offscreen/Offscreen.java,
Line 001, Page 536

Overriding the paint() method, Listing 23-1, GraphicsApp/GraphicsApp.java, Line 022, Page 512

Scrolling an image using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 027, Page 546

Text, painting with a font, Listing 23-3, FontDemo/FontDemo.java, Line 027, Page 521

HashMap class

Create a HashMap container and insert some associations, Listing 17-4,
SymbolMap/SymbolMap.java, Line 018, Page 334

HashMap constructors and method (see also Map), Listing 17-3, HashMap.txt, Line 001, Page
333

Search for HashMap entry by key value, Listing 17-4, SymbolMap/SymbolMap.java, Line 035,
Page 334

HashSet class

Adding a string object to a HashSet container, Listing 16-4, ParseWords/ParseWords.java, Line
020, Page 317

Adding a string object to a HashSet container, Listing 16-6, ParseTree/ParseTree.java, Line 020,
Page 321

Constructing a HashSet container, Listing 16-4, ParseWords/ParseWords.java, Line 010, Page
317

Displaying a HashSet container's contents, Listing 16-4, ParseWords/ParseWords.java, Line 034,
Page 317

HashSet constructors (see also Set), Listing 16-3, HashSet.txt, Line 001, Page 315

Parsing words in a text file, Listing 16-4, ParseWords/ParseWords.java, Line 004, Page 317

HTML

JLabel, create using HTML text, Listing 22-10, TextDemo/TextDemo.java, Line 037, Page 490

Use HTML to format a label, Listing 22-8, LabelDemo/LabelDemo.java, Line 036, Page 485

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

546

I/O

Construct File object for a directory path, Listing 24-2, Directory/Directory.java, Line 020, Page
561

Construct File object for a named file, Listing 24-3, FileInfo/FileInfo.java, Line 021, Page 563

Display information about a File object, Listing 24-3, FileInfo/FileInfo.java, Line 040, Page 563

Display integer variables, Listing 4-4, IntDemo/IntDemo.java, Line 009, Page 52

Filter filenames using FilenameFilter interface, Listing 24-4, FilterDir/FilterDir.java, Line 001,
Page 565

Get information about a file, Listing 24-3, FileInfo/FileInfo.java, Line 001, Page 563

Keypress, method to wait for, Listing 19-4, Primes/Primes.java, Line 056, Page 377

Read typed data from a file, Listing 24-8, ReadData/ReadData.java, Line 001, Page 577

Reading a string from System.in, Listing 24-1, ReadLine/ReadLine.java, Line 001, Page 557

Reading lines from a text file, Listing 24-6, ReadText/ReadText.java, Line 001, Page 573

Reading typed data using random access, Listing 24-10, ReadRandom/ReadRandom.java, Line
001, Page 580

Use File class to create a filename directory, Listing 24-2, Directory/Directory.java, Line 001,
Page 561

Use File class to list a directory, Listing 24-2, Directory/Directory.java, Line 038, Page 561

Use file streams to copy a file, Listing 24-5, CopyFile/CopyFile.java, Line 047, Page 568

Use file streams to copy a file, Listing 24-5, CopyFile/CopyFile.java, Line 001, Page 568

Write lines of text to a file, Listing 24-9, WriteText/WriteText.java, Line 001, Page 578

Writing typed data to a file, Listing 24-7, WriteData/WriteData.java, Line 001, Page 575

Icons

Add an icon to a text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 031, Page 485

Demonstrate a two-state toggle button, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 001,
Page 466

Display icon images in JButton objects, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001,
Page 464

Load an icon image GIF file, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

547

Use HTML to format a label, Listing 22-8, LabelDemo/LabelDemo.java, Line 036, Page 485

Images

Display icon images in JButton objects, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001,
Page 464

Image filtering, color to black-and-white, Listing 23-6, Filter/Filter.java, Line 001, Page 541

Input

Catching an IOException error, Listing 8-18, InputString/InputString.java, Line 014, Page 156

Command-line arguments, reading, Listing 8-19, CommandLine/CommandLine.java, Line 001,
Page 157

Importing IOException, Listing 8-18, InputString/InputString.java, Line 001, Page 156

Inputting a character, Listing 19-4, Primes/Primes.java, Line 046, Page 377

Keypress, method to wait for, Listing 19-4, Primes/Primes.java, Line 056, Page 377

Reading a single character, Listing 6-8, InputDemo/InputDemo.java, Line 006, Page 96

Reading a string, Listing 6-8, InputDemo/InputDemo.java, Line 013, Page 96

Reading a user-entered string, Listing 8-18, InputString/InputString.java, Line 008, Page 156

Wait for Enter key while background process runs, Listing 19-2, ThreadDemo/ThreadDemo.java,
Line 050, Page 372

Integers

Constant fields, declaring, Listing 15-6, ComparatorDemo/Chart.java, Line 004, Page 285

Converting integers to any number-base strings, Listing 9-19, ConvertInt/ConvertInt.java, Line
016, Page 179

Converting integers to binary strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 014, Page
179

Converting integers to hexadecimal strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 010,
Page 179

Converting integers to octal strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 012, Page 179

Converting integers to strings, Listing 9-19, ConvertInt/ConvertInt.java, Line 008, Page 179

Decimal, hexadecimal, and octal integers, Listing 4-4, IntDemo/IntDemo.java, Line 004, Page 52

Integer data types, Listing 4-4, IntDemo/IntDemo.java, Line 014, Page 52

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

548

Literal integer values, Listing 4-4, IntDemo/IntDemo.java, Line 014, Page 52

Parsing a string to an integer, Listing 9-19, ConvertInt/ConvertInt.java, Line 007, Page 179

Interfaces

Calling Iterator.remove() properly, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 033, Page
289

Calling Object.clone(), Listing 12-5, CloneDemo/CloneDemo.java, Line 051, Page 240

Collection interface methods, Listing 14-1, Collection.txt, Line 001, Page 270

Comparator interface, implementing, Listing 15-6, ComparatorDemo/Chart.java, Line 001, Page
285

Creating an interface, Listing 12-2, InterfaceDemo/TContainerInterface.java, Line 001, Page 234

Declaring an interface, Listing 12-1, TheInterface/TheInterface.java, Line 003, Page 232

Demonstrate using an implemented interface, Listing 12-4, InterfaceDemo/InterfaceDemo.java,
Line 001, Page 237

Display a Map container's keys and values, Listing 17-4, SymbolMap/SymbolMap.java, Line 006,
Page 334

FilenameFilter interface, implementing, Listing 24-4, FilterDir/FilterDir.java, Line 003, Page 565

Filter filenames using FilenameFilter interface, Listing 24-4, FilterDir/FilterDir.java, Line 001,
Page 565

Implementing an interface, Listing 12-1, TheInterface/TheInterface.java, Line 008, Page 232

Implementing an interface, Listing 12-3, InterfaceDemo/TContainer.java, Line 001, Page 235

Implementing Comparator, Listing 10-9, SortComparator/SortComparator.java, Line 004, Page
206

Implementing the Cloneable interface, Listing 12-5, CloneDemo/CloneDemo.java, Line 002,
Page 240

Implementing the Comparable interface, Listing 10-8, SortObjects/SortObjects.java, Line 003,
Page 204

Implementing the Runnable interface, Listing 19-4, Primes/Primes.java, Line 003, Page 377

Iterator interface methods, Listing 15-8, Iterator.txt, Line 001, Page 288

List interface methods not also in Collection, Listing 15-1, List.txt, Line 001, Page 277

ListIterator interface methods, Listing 15-11, ListIterator.txt, Line 001, Page 294

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

549

Map interface declarations, Listing 17-1, Map.txt, Line 001, Page 330

Map.Entry inner interface, Listing 17-5, Map.Entry.txt, Line 001, Page 338

Right and wrong ways to implement clone(), Listing 12-5, CloneDemo/CloneDemo.java, Line
018, Page 240

Set interface methods (see also Collection, SortedSet), Listing 16-1, Set.txt, Line 001, Page 309

SortedMap interface declarations, Listing 17-2, SortedMap.txt, Line 001, Page 332

SortedSet methods (see also Collection, Set), Listing 16-2, SortedSet.txt, Line 001, Page 311

The Runnable interface, Listing 19-3, Runnable.txt, Line 001, Page 377

Using an Iterator to remove all objects in a container, Listing 15-9,
IteratorDemo/IteratorDemo.java, Line 042, Page 289

Writing a compareTo() method, Listing 10-8, SortObjects/SortObjects.java, Line 011, Page 204

Iterator interface

Calling Iterator.remove() properly, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 033, Page
289

Display a Collection using an Iterator, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 008,
Page 289

Import the Iterator interface, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 001, Page 289

Iterator interface methods, Listing 15-8, Iterator.txt, Line 001, Page 288

ListIterator interface methods, Listing 15-11, ListIterator.txt, Line 001, Page 294

Using an Iterator to access a SortedSet container, Listing 16-7, SubTree/SubTree.java, Line 006,
Page 322

Using an Iterator to remove all objects in a container, Listing 15-9,
IteratorDemo/IteratorDemo.java, Line 042, Page 289

JFrame

Extending the JFrame class, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 005, Page 464

JFrame, extending in application class, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 005, Page 449

Prevent user from resizing a JFrame window, Listing 22-9, Password/Password.java, Line 039,
Page 487

Top-level frame, application, and content plane, Listing 21-2, SwingApp/SwingApp.java, Line
024, Page 442

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

550

Layouts

BorderLayout demonstration, Listing 21-5, BorderDemo/BorderDemo.java, Line 001, Page 454

BoxLayout demonstration, Listing 21-8, BoxDemo/BoxDemo.java, Line 001, Page 459

FlowLayout demonstration, Listing 21-4, FlowDemo/FlowDemo.java, Line 001, Page 453

GridBagLayout demonstration, Listing 21-7, GridBagDemo/GridBagDemo.java, Line 001, Page
456

GridLayout demonstration, Listing 21-6, GridDemo/GridDemo.java, Line 001, Page 455

Using nested panels for a neat appearance, Listing 22-3, ButtonDemo/ButtonDemo.java, Line
042, Page 469

LinkedList class

LinkedList methods (see also Collection, List), Listing 15-3, LinkedList.txt, Line 001, Page 279

Using a LinkedList container, Listing 15-10, LinkedListDemo/LinkedListDemo.java, Line 001,
Page 292

List interface

Adding objects to a List, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 018, Page 282

Displaying objects in a List container, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line
008, Page 282

List interface methods not also in Collection, Listing 15-1, List.txt, Line 001, Page 277

Sorting a List with Collections, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 026,
Page 282

Listing files

AbstractDemo.java, Listing 11-6, AbstractDemo/AbstractDemo.java, Line 001, Page 225

AbsValue.java, Listing 9-2, AbsValue/AbsValue.java, Line 001, Page 161

Animation.java, Listing 23-8, Animation/Animation.java, Line 001, Page 547

AppletADay.java, Listing 20-1, AppletADay/AppletADay.java, Line 001, Page 405

ArrayBounds.java, Listing 10-1, ArrayBounds/ArrayBounds.java, Line 001, Page 190

ArrayCopy.java, Listing 10-4, ArrayCopy/ArrayCopy.java, Line 001, Page 196

ArrayList.txt, Listing 15-2, ArrayList.txt, Line 001, Page 278

ArrayListDemo.java, Listing 15-5, ArrayListDemo/ArrayListDemo.java, Line 001, Page 282

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

551

ArraysEqual.txt, Listing 10-11, ArraysEqual.txt, Line 001, Page 208

ArraysFill.txt, Listing 10-12, ArraysFill.txt, Line 001, Page 209

ArraysList.java, Listing 10-14, ArraysList/ArraysList.java, Line 001, Page 211

ArraysList.txt, Listing 10-13, ArraysList.txt, Line 001, Page 211

ArraysSearch.txt, Listing 10-10, ArraysSearch.txt, Line 001, Page 207

ArraysSort.txt, Listing 10-6, ArraysSort.txt, Line 001, Page 202

BackColor.java, Listing 20-3, BackColor/BackColor.java, Line 001, Page 414

BinaryDemo.java, Listing 15-12, BinaryDemo/BinaryDemo.java, Line 001, Page 300

BitSet.txt, Listing 18-2, BitSet.txt, Line 001, Page 356

BitSetDemo.java, Listing 18-3, BitSetDemo/BitSetDemo.java, Line 001, Page 358

Boolean.txt, Listing 9-14, Boolean.txt, Line 001, Page 173

BooleanDemo.java, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 001, Page 174

BorderDemo.java, Listing 21-5, BorderDemo/BorderDemo.java, Line 001, Page 454

BoxDemo.java, Listing 21-8, BoxDemo/BoxDemo.java, Line 001, Page 459

ButtonDemo.java, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 001, Page 469

ButtonIcon.java, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001, Page 464

Byte.txt, Listing 9-21, Byte.txt, Line 001, Page 181

CeilFloor.java, Listing 9-4, CeilFloor/CeilFloor.java, Line 001, Page 162

Character.txt, Listing 8-15, Character.txt, Line 001, Page 150

CharArray.java, Listing 8-3, CharArray/CharArray.java, Line 001, Page 128

CharEncoding.java, Listing 8-4, CharEncoding/CharEncoding.java, Line 001, Page 130

Chart.java, Listing 15-6, ComparatorDemo/Chart.java, Line 001, Page 285

Chart.java, Listing 15-4, ArrayListDemo/Chart.java, Line 001, Page 281

ChRadix.java, Listing 8-16, ChRadix/ChRadix.java, Line 001, Page 152

ChType.java, Listing 8-17, ChType/ChType.java, Line 001, Page 154

Client.java, Listing 19-9, LockDemo/Client.java, Line 001, Page 397

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

552

CloneDemo.java, Listing 12-5, CloneDemo/CloneDemo.java, Line 001, Page 240

Collection.txt, Listing 14-1, Collection.txt, Line 001, Page 270

Collections.txt, Listing 18-1, Collections.txt, Line 001, Page 347

ColorApp.java, Listing 20-7, ColorApp/ColorApp.java, Line 001, Page 426

ColorDemo.java, Listing 22-7, ColorDemo/ColorDemo.java, Line 001, Page 484

ComboDemo.java, Listing 22-12, ComboDemo/ComboDemo.java, Line 001, Page 496

CommandLine.java, Listing 8-19, CommandLine/CommandLine.java, Line 001, Page 157

ComparatorDemo.java, Listing 15-7, ComparatorDemo/ComparatorDemo.java, Line 001, Page
287

Compare.java, Listing 8-7, Compare/Compare.java, Line 001, Page 134

Concat.java, Listing 8-9, Concat/Concat.java, Line 001, Page 137

ContainerDemo.java, Listing 14-2, ContainerDemo/ContainerDemo.java, Line 001, Page 272

ConvertInt.java, Listing 9-19, ConvertInt/ConvertInt.java, Line 001, Page 179

CopyFile.java, Listing 24-5, CopyFile/CopyFile.java, Line 001, Page 568

CosDemo.java, Listing 9-8, CosDemo/CosDemo.java, Line 001, Page 166

DataHiding.java, Listing 11-1, DataHiding/DataHiding.java, Line 001, Page 214

DateDemo.java, Listing 6-2, DateDemo/DateDemo.java, Line 001, Page 85

DateObject.java, Listing 6-1, DateObject/DateObject.java, Line 001, Page 81

DateShow.java, Listing 6-3, DateShow/DateShow.java, Line 001, Page 86

Delegate.java, Listing 20-5, Delegate/Delegate.java, Line 001, Page 418

Dictionary.java, Listing 17-7, Dictionary/Dictionary.java, Line 001, Page 342

Directory.java, Listing 24-2, Directory/Directory.java, Line 001, Page 561

Double.txt, Listing 9-26, Double.txt, Line 001, Page 184

DoWhileCount.java, Listing 5-3, DoWhileCount/DoWhileCount.java, Line 001, Page 74

Empty.txt, Listing 25-0, Empty.txt, Line 001

Empty.txt, Listing 26-0, Empty.txt, Line 001

Empty.txt, Listing 3-0, Empty.txt, Line 001

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

553

Empty.txt, Listing 2-0, Empty.txt, Line 001

Empty.txt, Listing 1-0, Empty.txt, Line 001

ExceptDemo.java, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 001, Page 105

FileDialog.java, Listing 22-6, FileDialog/FileDialog.java, Line 001, Page 480

FileInfo.java, Listing 24-3, FileInfo/FileInfo.java, Line 001, Page 563

Filter.java, Listing 23-6, Filter/Filter.java, Line 001, Page 541

FilterDir.java, Listing 24-4, FilterDir/FilterDir.java, Line 001, Page 565

FinalDemo.java, Listing 6-9, FinalDemo/FinalDemo.java, Line 001, Page 98

FinallyDemo.java, Listing 7-2, FinallyDemo/FinallyDemo.java, Line 001, Page 109

Float.txt, Listing 9-24, Float.txt, Line 001, Page 183

FloatCommon.txt, Listing 9-23, FloatCommon.txt, Line 001, Page 182

FlowDemo.java, Listing 21-4, FlowDemo/FlowDemo.java, Line 001, Page 453

FontDemo.java, Listing 23-3, FontDemo/FontDemo.java, Line 001, Page 521

ForCount.java, Listing 5-4, ForCount/ForCount.java, Line 001, Page 75

GetProperty.java, Listing 9-16, GetProperty/GetProperty.java, Line 001, Page 176

Gradient.java, Listing 23-2, Gradient/Gradient.java, Line 001, Page 517

GraphicsApp.java, Listing 23-1, GraphicsApp/GraphicsApp.java, Line 001, Page 512

GridBagDemo.java, Listing 21-7, GridBagDemo/GridBagDemo.java, Line 001, Page 456

GridDemo.java, Listing 21-6, GridDemo/GridDemo.java, Line 001, Page 455

HashMap.txt, Listing 17-3, HashMap.txt, Line 001, Page 333

HashSet.txt, Listing 16-3, HashSet.txt, Line 001, Page 315

InputDemo.java, Listing 6-8, InputDemo/InputDemo.java, Line 001, Page 96

InputString.java, Listing 8-18, InputString/InputString.java, Line 001, Page 156

IntCommon.txt, Listing 9-17, IntCommon.txt, Line 001, Page 177

IntDemo.java, Listing 4-4, IntDemo/IntDemo.java, Line 001, Page 52

Integer.txt, Listing 9-18, Integer.txt, Line 001, Page 179

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

554

InterfaceDemo.java, Listing 12-4, InterfaceDemo/InterfaceDemo.java, Line 001, Page 237

Iterator.txt, Listing 15-8, Iterator.txt, Line 001, Page 288

IteratorDemo.java, Listing 15-9, IteratorDemo/IteratorDemo.java, Line 001, Page 289

Job.java, Listing 19-7, LockDemo/Job.java, Line 001, Page 391

LabelDemo.java, Listing 22-8, LabelDemo/LabelDemo.java, Line 001, Page 485

LabelDemo.java, Listing 5-5, LabelDemo/LabelDemo.java, Line 001, Page 76

LinkedList.txt, Listing 15-3, LinkedList.txt, Line 001, Page 279

LinkedListDemo.java, Listing 15-10, LinkedListDemo/LinkedListDemo.java, Line 001, Page
292

List.txt, Listing 15-1, List.txt, Line 001, Page 277

ListDemo.java, Listing 22-11, ListDemo/ListDemo.java, Line 001, Page 492

ListIterator.txt, Listing 15-11, ListIterator.txt, Line 001, Page 294

LockDemo.java, Listing 19-10, LockDemo/LockDemo.java, Line 001, Page 399

Long.txt, Listing 9-20, Long.txt, Line 001, Page 181

Map.Entry.txt, Listing 17-5, Map.Entry.txt, Line 001, Page 338

Map.txt, Listing 17-1, Map.txt, Line 001, Page 330

Math.txt, Listing 9-1, Math.txt, Line 001, Page 159

MessageDemo.java, Listing 22-4, MessageDemo/MessageDemo.java, Line 001, Page 475

Methods.java, Listing 6-4, Methods/Methods.java, Line 001, Page 89

MinMax.java, Listing 9-3, MinMax/MinMax.java, Line 001, Page 162

MonthNames.java, Listing 8-6, MonthNames/MonthNames.java, Line 001, Page 133

MouseXY.java, Listing 20-4, MouseXY/MouseXY.java, Line 001, Page 416

NestedTry.java, Listing 7-3, NestedTry/NestedTry.java, Line 001, Page 111

NoComment.java, Listing 4-2, NoComment/NoComment.java, Line 001, Page 44

NullString.java, Listing 8-2, NullString/NullString.java, Line 001, Page 126

ObjectArray.java, Listing 10-3, ObjectArray/ObjectArray.java, Line 001, Page 194

Offscreen.java, Listing 23-5, Offscreen/Offscreen.java, Line 001, Page 536

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

555

OutputDemo.java, Listing 6-7, OutputDemo/OutputDemo.java, Line 001, Page 95

Overload.java, Listing 6-6, Overload/Overload.java, Line 001, Page 92

PackageTest.java, Listing 13-4, PackageTest/PackageTest.java, Line 001, Page 255

ParseFloat.java, Listing 9-25, ParseFloat/ParseFloat.java, Line 001, Page 184

ParseTree.java, Listing 16-6, ParseTree/ParseTree.java, Line 001, Page 321

ParseWords.java, Listing 16-4, ParseWords/ParseWords.java, Line 001, Page 317

Password.java, Listing 22-9, Password/Password.java, Line 001, Page 487

PopupDemo.java, Listing 22-13, PopupDemo/PopupDemo.java, Line 001, Page 499

PowerDemo.java, Listing 9-5, PowerDemo/PowerDemo.java, Line 001, Page 163

Primes.java, Listing 19-4, Primes/Primes.java, Line 001, Page 377

ProtectedData.java, Listing 11-2, ProtectedData/ProtectedData.java, Line 001, Page 216

Queue.java, Listing 19-6, LockDemo/Queue.java, Line 001, Page 389

RandGen.java, Listing 9-11, RandGen/RandGen.java, Line 001, Page 169

Random.txt, Listing 9-10, Random.txt, Line 001, Page 168

RandomBytes.java, Listing 9-12, RandomBytes/RandomBytes.java, Line 001, Page 171

RandomColor.java, Listing 20-6, RandomColor/RandomColor.java, Line 001, Page 425

RandomDemo.java, Listing 9-9, RandomDemo/RandomDemo.java, Line 001, Page 167

RandomSeed.java, Listing 9-13, RandomSeed/RandomSeed.java, Line 001, Page 172

ReadData.java, Listing 24-8, ReadData/ReadData.java, Line 001, Page 577

ReadLine.java, Listing 24-1, ReadLine/ReadLine.java, Line 001, Page 557

ReadRandom.java, Listing 24-10, ReadRandom/ReadRandom.java, Line 001, Page 580

ReadText.java, Listing 24-6, ReadText/ReadText.java, Line 001, Page 573

Remainder.java, Listing 9-6, Remainder/Remainder.java, Line 001, Page 164

Round.java, Listing 9-7, Round/Round.java, Line 001, Page 165

Runnable.txt, Listing 19-3, Runnable.txt, Line 001, Page 377

SafetyClass.java, Listing 19-5, SafetyClass/SafetyClass.java, Line 001, Page 385

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

556

Serial.java, Listing 6-5, Serial/Serial.java, Line 001, Page 91

Server.java, Listing 19-8, LockDemo/Server.java, Line 001, Page 394

Set.txt, Listing 16-1, Set.txt, Line 001, Page 309

Short.txt, Listing 9-22, Short.txt, Line 001, Page 182

ShowPic.java, Listing 23-4, ShowPic/ShowPic.java, Line 001, Page 530

SimpleApp.java, Listing 20-2, SimpleApp/SimpleApp.java, Line 001, Page 408

SortComparator.java, Listing 10-9, SortComparator/SortComparator.java, Line 001, Page 206

SortedMap.txt, Listing 17-2, SortedMap.txt, Line 001, Page 332

SortedSet.txt, Listing 16-2, SortedSet.txt, Line 001, Page 311

SortObjects.java, Listing 10-8, SortObjects/SortObjects.java, Line 001, Page 204

SortStrings.java, Listing 10-7, SortStrings/SortStrings.java, Line 001, Page 203

Stack.java, Listing 15-13, StackDemo/Stack.java, Line 001, Page 303

StackDemo.java, Listing 15-14, StackDemo/StackDemo.java, Line 001, Page 306

StackTrace.java, Listing 7-4, StackTrace/StackTrace.java, Line 001, Page 113

StringAppend.java, Listing 8-14, StringAppend/StringAppend.java, Line 001, Page 145

StringBufferMethods.txt, Listing 8-13, StringBufferMethods.txt, Line 001, Page 142

StringConstructors.txt, Listing 8-1, StringConstructors.txt, Line 001, Page 126

StringIntern.java, Listing 8-11, StringIntern/StringIntern.java, Line 001, Page 139

StringLocale.java, Listing 8-8, StringLocale/StringLocale.java, Line 001, Page 136

StringMethods.txt, Listing 8-5, StringMethods.txt, Line 001, Page 131

StringTrimmer.java, Listing 8-10, StringTrimmer/StringTrimmer.java, Line 001, Page 139

StringValue.txt, Listing 8-12, StringValue.txt, Line 001, Page 140

SubTree.java, Listing 16-7, SubTree/SubTree.java, Line 001, Page 322

Successor.java, Listing 16-8, Successor/Successor.java, Line 001, Page 323

SwingApp.java, Listing 21-2, SwingApp/SwingApp.java, Line 001, Page 442

SwingApplet.java, Listing 21-1, SwingApplet/SwingApplet.java, Line 001, Page 438

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

557

SwingMenuDemo.java, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 001, Page
449

SwingPic.java, Listing 23-7, SwingPic/SwingPic.java, Line 001, Page 546

Switcher.java, Listing 5-1, Switcher/Switcher.java, Line 001, Page 72

SymbolMap.java, Listing 17-4, SymbolMap/SymbolMap.java, Line 001, Page 334

TClass1.java, Listing 13-1, PackageTest/stuff/TClass1.java, Line 001, Page 253

TClass2.java, Listing 13-2, PackageTest/stuff/TClass2.java, Line 001, Page 254

TClass3.java, Listing 13-3, PackageTest/morestuff/TClass3.java, Line 001, Page 254

TContainer.java, Listing 12-3, InterfaceDemo/TContainer.java, Line 001, Page 235

TContainer.java, Listing 11-4, AbstractDemo/TContainer.java, Line 001, Page 221

TContainerInterface.java, Listing 12-2, InterfaceDemo/TContainerInterface.java, Line 001, Page
234

TestClass.java, Listing 10-5, ArrayCopy/TestClass.java, Line 001, Page 197

TextDemo.java, Listing 22-10, TextDemo/TextDemo.java, Line 001, Page 490

TheInterface.java, Listing 12-1, TheInterface/TheInterface.java, Line 001, Page 232

Thread.txt, Listing 19-1, Thread.txt, Line 001, Page 368

ThreadDemo.java, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 001, Page 372

TMyObject.java, Listing 11-5, AbstractDemo/TMyObject.java, Line 001, Page 224

TObject.java, Listing 11-3, AbstractDemo/TObject.java, Line 001, Page 220

ToggleDemo.java, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 001, Page 466

ToolDemo.java, Listing 22-14, ToolDemo/ToolDemo.java, Line 001, Page 504

TreeMap.txt, Listing 17-6, TreeMap.txt, Line 001, Page 341

TreeSet.txt, Listing 16-5, TreeSet.txt, Line 001, Page 319

Triangle.java, Listing 10-2, Triangle/Triangle.java, Line 001, Page 192

VarDemo.java, Listing 4-3, VarDemo/VarDemo.java, Line 001, Page 49

Welcome.java, Listing 4-1, Welcome/Welcome.java, Line 001, Page 38

WhileCount.java, Listing 5-2, WhileCount/WhileCount.java, Line 001, Page 74

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

558

WriteData.java, Listing 24-7, WriteData/WriteData.java, Line 001, Page 575

WriteText.java, Listing 24-9, WriteText/WriteText.java, Line 001, Page 578

YesNoDemo.java, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 001, Page 478

ListIterator interface

ListIterator interface methods, Listing 15-11, ListIterator.txt, Line 001, Page 294

Lists

Convert an array to a List object, Listing 10-14, ArraysList/ArraysList.java, Line 010, Page 211

JList list demonstration, Listing 22-11, ListDemo/ListDemo.java, Line 001, Page 492

JList, create a list of string items, Listing 22-11, ListDemo/ListDemo.java, Line 029, Page 492

Respond to a list selection event, Listing 22-11, ListDemo/ListDemo.java, Line 039, Page 492

Using an array as a List object, Listing 10-14, ArraysList/ArraysList.java, Line 001, Page 211

Locales

Convert string to lowercase using a Locale, Listing 8-8, StringLocale/StringLocale.java, Line 007,
Page 136

Import the Locale class, Listing 8-8, StringLocale/StringLocale.java, Line 001, Page 136

Map interface

Display a Map container's keys and values, Listing 17-4, SymbolMap/SymbolMap.java, Line 006,
Page 334

Map interface declarations, Listing 17-1, Map.txt, Line 001, Page 330

Map.Entry interface, using to access a Map container's objects, Listing 17-4,
SymbolMap/SymbolMap.java, Line 010, Page 334

Map.Entry interface

Map.Entry inner interface, Listing 17-5, Map.Entry.txt, Line 001, Page 338

Math

Boolean wrapper class constructors, Listing 9-14, Boolean.txt, Line 005, Page 173

Boolean wrapper class fields, Listing 9-14, Boolean.txt, Line 001, Page 173

Boolean wrapper class methods, Listing 9-14, Boolean.txt, Line 009, Page 173

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

559

Boolean wrapper class public declarations, Listing 9-14, Boolean.txt, Line 001, Page 173

Byte wrapper class constructors, Listing 9-21, Byte.txt, Line 001, Page 181

Byte wrapper class methods, Listing 9-21, Byte.txt, Line 005, Page 181

Byte wrapper class public declarations, Listing 9-21, Byte.txt, Line 001, Page 181

Catching a string-to-integer parsing error, Listing 9-5, PowerDemo/PowerDemo.java, Line 012,
Page 163

Common to Float and Double classes, Listing 9-23, FloatCommon.txt, Line 001, Page 182

Common to Short, Byte, Integer, and Long classes, Listing 9-17, IntCommon.txt, Line 001, Page
177

Creating a random number generator object, Listing 9-11, RandGen/RandGen.java, Line 005,
Page 169

Double wrapper class bit converters, Listing 9-26, Double.txt, Line 013, Page 184

Double wrapper class constructors, Listing 9-26, Double.txt, Line 001, Page 184

Double wrapper class methods, Listing 9-26, Double.txt, Line 005, Page 184

Double wrapper class public declarations, Listing 9-26, Double.txt, Line 001, Page 184

Float wrapper class bit converters, Listing 9-24, Float.txt, Line 014, Page 183

Float wrapper class constructors, Listing 9-24, Float.txt, Line 001, Page 183

Float wrapper class methods, Listing 9-24, Float.txt, Line 006, Page 183

Float wrapper class public declarations, Listing 9-24, Float.txt, Line 001, Page 183

Getting random numbers from a Random object, Listing 9-11, RandGen/RandGen.java, Line 010,
Page 169

Importing the Random java.util class, Listing 9-11, RandGen/RandGen.java, Line 001, Page 169

Integer wrapper class constructors, Listing 9-18, Integer.txt, Line 001, Page 179

Integer wrapper class methods, Listing 9-18, Integer.txt, Line 005, Page 179

Integer wrapper class property methods, Listing 9-18, Integer.txt, Line 017, Page 179

Integer wrapper class public declarations, Listing 9-18, Integer.txt, Line 001, Page 179

Long wrapper class constructors, Listing 9-20, Long.txt, Line 001, Page 181

Long wrapper class methods, Listing 9-20, Long.txt, Line 005, Page 181

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

560

Long wrapper class property methods, Listing 9-20, Long.txt, Line 018, Page 181

Long wrapper class public declarations, Listing 9-20, Long.txt, Line 001, Page 181

Math class constants, Listing 9-1, Math.txt, Line 004, Page 159

Math class constructor, Listing 9-1, Math.txt, Line 001, Page 159

Math class methods, Listing 9-1, Math.txt, Line 008, Page 159

Math class public methods, Listing 9-1, Math.txt, Line 001, Page 159

NumberFormatException, Listing 9-5, PowerDemo/PowerDemo.java, Line 012, Page 163

Parsing a string to an integer, Listing 9-5, PowerDemo/PowerDemo.java, Line 008, Page 163

Prime numbers, finding, Listing 19-4, Primes/Primes.java, Line 014, Page 377

Random class constructors, Listing 9-10, Random.txt, Line 001, Page 168

Random class methods, Listing 9-10, Random.txt, Line 005, Page 168

Random class public methods, Listing 9-10, Random.txt, Line 001, Page 168

Random values, converting to integer, Listing 9-9, RandomDemo/RandomDemo.java, Line 008,
Page 167

Randomizing a byte array, Listing 9-12, RandomBytes/RandomBytes.java, Line 019, Page 171

Reseeding a Random object, Listing 9-13, RandomSeed/RandomSeed.java, Line 001, Page 172

Short wrapper class constructors, Listing 9-22, Short.txt, Line 001, Page 182

Short wrapper class methods, Listing 9-22, Short.txt, Line 005, Page 182

Short wrapper class public declarations, Listing 9-22, Short.txt, Line 001, Page 182

Using the Math class abs() method, Listing 9-2, AbsValue/AbsValue.java, Line 001, Page 161

Using the Math class ceil() and floor() methods, Listing 9-4, CeilFloor/CeilFloor.java, Line 001,
Page 162

Using the Math class cos() method, Listing 9-8, CosDemo/CosDemo.java, Line 001, Page 166

Using the Math class IEEERemainder() method, Listing 9-6, Remainder/Remainder.java, Line
001, Page 164

Using the Math class min() and max() methods, Listing 9-3, MinMax/MinMax.java, Line 001,
Page 162

Using the Math class pow() method, Listing 9-5, PowerDemo/PowerDemo.java, Line 001, Page
163

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

561

Using the Math class random() method, Listing 9-9, RandomDemo/RandomDemo.java, Line 001,
Page 167

Using the Math class rint() method, Listing 9-7, Round/Round.java, Line 004, Page 165

Using the Math class round() methods, Listing 9-7, Round/Round.java, Line 005, Page 165

Using the Math class rounding methods, Listing 9-7, Round/Round.java, Line 001, Page 165

Using the Random.nextBytes() method, Listing 9-12, RandomBytes/RandomBytes.java, Line 001,
Page 171

Using the Random.setSeed() method, Listing 9-13, RandomSeed/RandomSeed.java, Line 010,
Page 172

Menus

Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 013, Page 504

Create popup menu and command objects, Listing 22-13, PopupDemo/PopupDemo.java, Line
008, Page 499

Creating a popup menu, Listing 22-13, PopupDemo/PopupDemo.java, Line 030, Page 499

Creating action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 032, Page 504

How to bring up a Swing popup menu, Listing 22-13, PopupDemo/PopupDemo.java, Line 017,
Page 499

Popup menus, Listing 22-13, PopupDemo/PopupDemo.java, Line 001, Page 499

Responding to popup menu command selections, Listing 22-13, PopupDemo/PopupDemo.java,
Line 073, Page 499

Methods

Declaring a method's checked exceptions, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 012,
Page 105

Declaring method array parameters, Listing 10-5, ArrayCopy/TestClass.java, Line 002, Page 197

Declaring method parameters, Listing 6-1, DateObject/DateObject.java, Line 006, Page 81

finalize() method, Listing 6-9, FinalDemo/FinalDemo.java, Line 005, Page 98

Overloaded methods, calling, Listing 6-6, Overload/Overload.java, Line 019, Page 92

Overloaded methods, writing, Listing 6-6, Overload/Overload.java, Line 001, Page 92

Public methods, writing, Listing 6-1, DateObject/DateObject.java, Line 012, Page 81

Writing a class method, Listing 6-4, Methods/Methods.java, Line 003, Page 89

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

562

Operators

Assigning a value to a variable, Listing 4-3, VarDemo/VarDemo.java, Line 004, Page 49

Comparison operators, Listing 8-7, Compare/Compare.java, Line 006, Page 134

Equality operator in an if statement, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 020, Page
105

Increment operator and char, Listing 6-7, OutputDemo/OutputDemo.java, Line 004, Page 95

Increment operator in for statement, Listing 5-4, ForCount/ForCount.java, Line 004, Page 75

Incrementing flow-control variable, Listing 5-3, DoWhileCount/DoWhileCount.java, Line 005,
Page 74

less-than operator, Listing 5-2, WhileCount/WhileCount.java, Line 004, Page 74

Less-than-or-equal and greater-than-or-equal operators, Listing 8-16, ChRadix/ChRadix.java,
Line 006, Page 152

Postfix increment (++) operator, Listing 5-2, WhileCount/WhileCount.java, Line 005, Page 74

Output

Display integer variables, Listing 4-4, IntDemo/IntDemo.java, Line 009, Page 52

Display value of a variable, Listing 4-3, VarDemo/VarDemo.java, Line 005, Page 49

Displaying a byte array, Listing 9-12, RandomBytes/RandomBytes.java, Line 007, Page 171

Writing a string to the standard output, Listing 4-1, Welcome/Welcome.java, Line 003, Page 38

Packages

Creating a package, Listing 13-1, PackageTest/stuff/TClass1.java, Line 001, Page 253

Friendly instance variables, Listing 13-1, PackageTest/stuff/TClass1.java, Line 004, Page 253

Importing a class from a package, Listing 6-2, DateDemo/DateDemo.java, Line 001, Page 85

Importing and using named packages, Listing 13-4, PackageTest/PackageTest.java, Line 001,
Page 255

Refering to friendly declarations in the same package, Listing 13-2,
PackageTest/stuff/TClass2.java, Line 003, Page 254

Panels

JPanel objects, creating, Listing 21-5, BorderDemo/BorderDemo.java, Line 005, Page 454

Set JPanel layout manager, Listing 21-8, BoxDemo/BoxDemo.java, Line 014, Page 459

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

563

Using inner JPanels for appearance, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 087, Page
469

Using nested panels for a neat appearance, Listing 22-3, ButtonDemo/ButtonDemo.java, Line
042, Page 469

Parameters

Class constructor with parameters, Listing 7-1, ExceptDemo/ExceptDemo.java, Line 002, Page
105

Declaring method array parameters, Listing 10-5, ArrayCopy/TestClass.java, Line 002, Page 197

Declaring method parameters, Listing 6-1, DateObject/DateObject.java, Line 006, Page 81

Overloading methods using parameters, Listing 6-6, Overload/Overload.java, Line 001, Page 92

Parsing

Catching a string-to-integer parsing error, Listing 9-5, PowerDemo/PowerDemo.java, Line 012,
Page 163

Parsing a string to an integer, Listing 9-5, PowerDemo/PowerDemo.java, Line 008, Page 163

Parsing strings to floating point values, Listing 9-25, ParseFloat/ParseFloat.java, Line 001, Page
184

Passwords

Create username and password entry objects, Listing 22-9, Password/Password.java, Line 008,
Page 487

Get text from JPasswordField object, Listing 22-9, Password/Password.java, Line 052, Page 487

Popup menus

Create popup menu and command objects, Listing 22-13, PopupDemo/PopupDemo.java, Line
008, Page 499

Creating a popup menu, Listing 22-13, PopupDemo/PopupDemo.java, Line 030, Page 499

How to bring up a Swing popup menu, Listing 22-13, PopupDemo/PopupDemo.java, Line 017,
Page 499

Responding to popup menu command selections, Listing 22-13, PopupDemo/PopupDemo.java,
Line 073, Page 499

Properties

Getting a boolean property value, Listing 9-16, GetProperty/GetProperty.java, Line 013, Page
176

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

564

Getting a non-boolean property value, Listing 9-16, GetProperty/GetProperty.java, Line 017,
Page 176

Radio buttons

Radio buttons, adding to a group, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 053, Page
469

Radio buttons, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Runnable interface

Animation in applets, Listing 23-8, Animation/Animation.java, Line 004, Page 547

Constructing a thread using a Runnable class, Listing 19-4, Primes/Primes.java, Line 063, Page
377

Implementing the Runnable interface, Listing 19-4, Primes/Primes.java, Line 003, Page 377

Offscreen images, create and display using threaded code, Listing 23-5, Offscreen/Offscreen.java,
Line 001, Page 536

Runnable class that does its own job in a thread, Listing 19-7, LockDemo/Job.java, Line 001,
Page 391

Server class, creating to queue and process jobs, Listing 19-8, LockDemo/Server.java, Line 001,
Page 394

The Runnable interface, Listing 19-3, Runnable.txt, Line 001, Page 377

Scrolling

Add a scroller to a text area object, Listing 22-10, TextDemo/TextDemo.java, Line 031, Page 490

Scrolling an image using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 027, Page 546

Set interface

Set interface methods (see also Collection, SortedSet), Listing 16-1, Set.txt, Line 001, Page 309

SortedMap interface

SortedMap interface declarations, Listing 17-2, SortedMap.txt, Line 001, Page 332

SortedSet interface

Getting a non-inclusive subset of a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line
024, Page 322

Getting an inclusive subset of a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line 027,
Page 322

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

565

Method for finding a SortedSet object successor, Listing 16-8, Successor/Successor.java, Line
006, Page 323

Method for returning an inclusive SortedSet subset, Listing 16-8, Successor/Successor.java, Line
015, Page 323

SortedSet methods (see also Collection, Set), Listing 16-2, SortedSet.txt, Line 001, Page 311

Using an Iterator to access a SortedSet container, Listing 16-7, SubTree/SubTree.java, Line 006,
Page 322

Sorting

Comparator objects, using to sort, Listing 15-7, ComparatorDemo/ComparatorDemo.java, Line
001, Page 287

Sorting a container using Comparator objects, Listing 15-7,
ComparatorDemo/ComparatorDemo.java, Line 026, Page 287

Streams

Use file streams to copy a file, Listing 24-5, CopyFile/CopyFile.java, Line 001, Page 568

Strings

Appending characters to a StringBuffer object, Listing 6-7, OutputDemo/OutputDemo.java, Line
005, Page 95

Appending to a StringBuffer object, Listing 8-14, StringAppend/StringAppend.java, Line 010,
Page 145

BufferedReader class, using, Listing 24-1, ReadLine/ReadLine.java, Line 005, Page 557

Calling intern() for a pooled string, Listing 8-11, StringIntern/StringIntern.java, Line 003, Page
139

Character class "is" methods, Listing 8-15, Character.txt, Line 015, Page 150

Character class constructor, Listing 8-15, Character.txt, Line 001, Page 150

Character class methods, Listing 8-15, Character.txt, Line 004, Page 150

Character class other methods, Listing 8-15, Character.txt, Line 034, Page 150

Command-line arguments, reading, Listing 8-19, CommandLine/CommandLine.java, Line 001,
Page 157

Compare one string to another, Listing 8-7, Compare/Compare.java, Line 005, Page 134

Concatenation using concat(), Listing 8-9, Concat/Concat.java, Line 007, Page 137

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

566

Construct 8-bit ASCII character byte array, Listing 8-4, CharEncoding/CharEncoding.java, Line
006, Page 130

Convert byte array to a String using a character encoding, Listing 8-4,
CharEncoding/CharEncoding.java, Line 009, Page 130

Convert command line string argument to an integer, Listing 15-12,
BinaryDemo/BinaryDemo.java, Line 037, Page 300

Convert string to lowercase using a Locale, Listing 8-8, StringLocale/StringLocale.java, Line 007,
Page 136

Creating a string from an array of char, Listing 8-3, CharArray/CharArray.java, Line 007, Page
128

Creating a StringBuffer object, Listing 6-7, OutputDemo/OutputDemo.java, Line 003, Page 95

Creating long literal strings, Listing 8-6, MonthNames/MonthNames.java, Line 003, Page 133

Finding index of character, Listing 8-6, MonthNames/MonthNames.java, Line 008, Page 133

Parsing a string to an integer, Listing 9-19, ConvertInt/ConvertInt.java, Line 007, Page 179

Parsing a string to an integer, Listing 9-5, PowerDemo/PowerDemo.java, Line 008, Page 163

Reading a single character, Listing 6-8, InputDemo/InputDemo.java, Line 006, Page 96

Reading a string, Listing 6-8, InputDemo/InputDemo.java, Line 013, Page 96

Reading a string from System.in, Listing 24-1, ReadLine/ReadLine.java, Line 001, Page 557

Reading a user-entered string, Listing 8-18, InputString/InputString.java, Line 008, Page 156

String class comparison methods, Listing 8-5, StringMethods.txt, Line 009, Page 131

String class constructors, Listing 8-1, StringConstructors.txt, Line 001, Page 126

String class conversion methods, Listing 8-5, StringMethods.txt, Line 031, Page 131

String class index methods, Listing 8-5, StringMethods.txt, Line 021, Page 131

String class inspection methods, Listing 8-5, StringMethods.txt, Line 001, Page 131

String class value methods, Listing 8-12, StringValue.txt, Line 001, Page 140

StringBuffer class append methods, Listing 8-13, StringBufferMethods.txt, Line 017, Page 142

StringBuffer class char methods, Listing 8-13, StringBufferMethods.txt, Line 012, Page 142

StringBuffer class constructors, Listing 8-13, StringBufferMethods.txt, Line 001, Page 142

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

567

StringBuffer class delete and replace methods, Listing 8-13, StringBufferMethods.txt, Line 029,
Page 142

StringBuffer class insert methods, Listing 8-13, StringBufferMethods.txt, Line 038, Page 142

StringBuffer class length and capacity methods, Listing 8-13, StringBufferMethods.txt, Line 006,
Page 142

StringBuffer class other methods, Listing 8-13, StringBufferMethods.txt, Line 050, Page 142

StringBuffer class substring methods, Listing 8-13, StringBufferMethods.txt, Line 034, Page 142

Substring, creating using indexes, Listing 8-6, MonthNames/MonthNames.java, Line 010, Page
133

Trim leading and trailing blanks from a string, Listing 8-10, StringTrimmer/StringTrimmer.java,
Line 005, Page 139

Writing a string to the standard output, Listing 4-1, Welcome/Welcome.java, Line 003, Page 38

Writing a string to the standard output, Listing 9-25, ParseFloat/ParseFloat.java, Line 001, Page
184

Swing

Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 013, Page 504

Add a scroller to a text area object, Listing 22-10, TextDemo/TextDemo.java, Line 031, Page 490

Add an icon to a text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 031, Page 485

Add button to applet pane, Listing 21-8, BoxDemo/BoxDemo.java, Line 007, Page 459

Adding a toolbar to a frame, Listing 22-14, ToolDemo/ToolDemo.java, Line 120, Page 504

BorderFactory, using to set a component's border, Listing 21-1, SwingApplet/SwingApplet.java,
Line 008, Page 438

BorderLayout demonstration, Listing 21-5, BorderDemo/BorderDemo.java, Line 001, Page 454

BoxLayout demonstration, Listing 21-8, BoxDemo/BoxDemo.java, Line 001, Page 459

Button and check box demonstration, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 001,
Page 469

Check boxes, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Closing a window, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 013, Page 449

Confirmation dialogs, Listing 22-5, YesNoDemo/YesNoDemo.java, Line 001, Page 478

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

568

Content pane, adding a component to the, Listing 21-1, SwingApplet/SwingApplet.java, Line 009,
Page 438

Content plane, adding components pane to, Listing 21-2, SwingApp/SwingApp.java, Line 027,
Page 442

Create a JFrame child window, Listing 23-3, FontDemo/FontDemo.java, Line 006, Page 521

Create a JTextArea object, Listing 22-10, TextDemo/TextDemo.java, Line 026, Page 490

Create a simple default text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 028, Page 485

Create username and password entry objects, Listing 22-9, Password/Password.java, Line 008,
Page 487

Creating a ButtonGroup object, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Creating action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 032, Page 504

Demonstrate a two-state toggle button, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 001,
Page 466

Demonstrate icons and html in JLabel objects, Listing 22-8, LabelDemo/LabelDemo.java, Line
001, Page 485

Demonstrate JTextArea, Listing 22-10, TextDemo/TextDemo.java, Line 001, Page 490

Demonstrate JTextField and JPasswordField, Listing 22-9, Password/Password.java, Line 001,
Page 487

Display icon images in JButton objects, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 001,
Page 464

Ending program when window closes, Listing 21-2, SwingApp/SwingApp.java, Line 029, Page
442

File-open and file-save dialogs, Listing 22-6, FileDialog/FileDialog.java, Line 001, Page 480

FlowLayout demonstration, Listing 21-4, FlowDemo/FlowDemo.java, Line 001, Page 453

GridBagLayout demonstration, Listing 21-7, GridBagDemo/GridBagDemo.java, Line 001, Page
456

GridLayout demonstration, Listing 21-6, GridDemo/GridDemo.java, Line 001, Page 455

Image loading and displaying using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 001,
Page 546

JColorChooser component demonstration, Listing 22-7, ColorDemo/ColorDemo.java, Line 001,
Page 484

JComboBox demonstration, Listing 22-12, ComboDemo/ComboDemo.java, Line 001, Page 496

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

569

JComboBox, create selection list, Listing 22-12, ComboDemo/ComboDemo.java, Line 030, Page
496

JFrame, extending in application class, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 005, Page 449

JFrame, setting the title and size, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line
036, Page 449

JLabel, create using HTML text, Listing 22-10, TextDemo/TextDemo.java, Line 037, Page 490

JLabel, creating, Listing 21-1, SwingApplet/SwingApplet.java, Line 006, Page 438

JList list demonstration, Listing 22-11, ListDemo/ListDemo.java, Line 001, Page 492

JList, create a list of string items, Listing 22-11, ListDemo/ListDemo.java, Line 029, Page 492

JPanel, creating as a Swing component container, Listing 21-2, SwingApp/SwingApp.java, Line
007, Page 442

JToggleButton, create with icon, Listing 22-2, ToggleDemo/ToggleDemo.java, Line 028, Page
466

Load an icon image GIF file, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

Look and feel, setting the system, Listing 21-2, SwingApp/SwingApp.java, Line 017, Page 442

Menus, creating menu bar, menu, and menu item, Listing 21-3,
SwingMenuDemo/SwingMenuDemo.java, Line 020, Page 449

Menus, specifying an action listener for, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 028, Page 449

Menus, variables used in creating, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line
009, Page 449

Message dialog demonstration, Listing 22-4, MessageDemo/MessageDemo.java, Line 001, Page
475

Popup menus, Listing 22-13, PopupDemo/PopupDemo.java, Line 001, Page 499

Prevent user from resizing a JFrame window, Listing 22-9, Password/Password.java, Line 039,
Page 487

Pulldown menus in Swing applications, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java,
Line 001, Page 449

Radio buttons, adding to a group, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 053, Page
469

Radio buttons, creating, Listing 22-3, ButtonDemo/ButtonDemo.java, Line 011, Page 469

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

570

Respond to a list selection event, Listing 22-11, ListDemo/ListDemo.java, Line 039, Page 492

Scrolling an image using Swing, Listing 23-7, SwingPic/SwingPic.java, Line 027, Page 546

Simple Swing applet, Listing 21-1, SwingApplet/SwingApplet.java, Line 001, Page 438

Simple Swing application, Listing 21-2, SwingApp/SwingApp.java, Line 001, Page 442

Swing toolbars and actions, Listing 22-14, ToolDemo/ToolDemo.java, Line 001, Page 504

Toggle a button's icon using a ChangeListener, Listing 22-2, ToggleDemo/ToggleDemo.java,
Line 031, Page 466

Toolbar, creating using Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 081, Page
504

Top-level frame, application, and content plane, Listing 21-2, SwingApp/SwingApp.java, Line
024, Page 442

Use HTML to format a label, Listing 22-8, LabelDemo/LabelDemo.java, Line 036, Page 485

Using nested panels for a neat appearance, Listing 22-3, ButtonDemo/ButtonDemo.java, Line
042, Page 469

Synchronized

Private synchronized method and server threads, Listing 19-8, LockDemo/Server.java, Line 016,
Page 394

Sychronized method, declaring, Listing 19-6, LockDemo/Queue.java, Line 011, Page 389

System class

Getting a non-boolean property value, Listing 9-16, GetProperty/GetProperty.java, Line 017,
Page 176

Text

Add an icon to a text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 031, Page 485

Create a JTextArea object, Listing 22-10, TextDemo/TextDemo.java, Line 026, Page 490

Create a simple default text label, Listing 22-8, LabelDemo/LabelDemo.java, Line 028, Page 485

Create username and password entry objects, Listing 22-9, Password/Password.java, Line 008,
Page 487

Demonstrate icons and html in JLabel objects, Listing 22-8, LabelDemo/LabelDemo.java, Line
001, Page 485

Demonstrate JTextArea, Listing 22-10, TextDemo/TextDemo.java, Line 001, Page 490

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

571

Demonstrate JTextField and JPasswordField, Listing 22-9, Password/Password.java, Line 001,
Page 487

Get text from JPasswordField object, Listing 22-9, Password/Password.java, Line 052, Page 487

Use HTML to format a label, Listing 22-8, LabelDemo/LabelDemo.java, Line 036, Page 485

Write lines of text to a file, Listing 24-9, WriteText/WriteText.java, Line 001, Page 578

Thread class

Thread class constructors, Listing 19-1, Thread.txt, Line 006, Page 368

Thread class deprecated methods, Listing 19-1, Thread.txt, Line 047, Page 368

Thread class public declarations, Listing 19-1, Thread.txt, Line 001, Page 368

Thread class public fields, Listing 19-1, Thread.txt, Line 001, Page 368

Thread class public methods, Listing 19-1, Thread.txt, Line 015, Page 368

Thread class, extending, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 003, Page 372

Threads

Background process, creating, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 041, Page 372

Background process, starting, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 047, Page 372

Class that feeds jobs to a server for processing, Listin g 19-9, LockDemo/Client.java, Line 001,
Page 397

Constructing a thread using a Runnable class, Listing 19-4, Primes/Primes.java, Line 063, Page
377

Data hiding and synchronization, an illustration, Listing 19-5, SafetyClass/SafetyClass.java, Line
001, Page 385

Halting a thread, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 030, Page 372

Images, loading using threaded code, Listing 23-4, ShowPic/ShowPic.java, Line 027, Page 530

Implementing the Runnable interface, Listing 19-4, Primes/Primes.java, Line 003, Page 377

Offscreen images, create and display using threaded code, Listing 23-5, Offscreen/Offscreen.java,
Line 001, Page 536

Prime numbers, computing in the background, Listing 19-4, Primes/Primes.java, Line 043, Page
377

Queue class with synchronized methods, Listing 19-6, LockDemo/Queue.java, Line 001, Page
389

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

572

Runnable class that does its own job in a thread, Listing 19-7, LockDemo/Job.java, Line 001,
Page 391

Server class, creating to queue and process jobs, Listing 19-8, LockDemo/Server.java, Line 001,
Page 394

Spawning a daemon thread in a run() method, Listing 19-9, LockDemo/Client.java, Line 020,
Page 397

Sychronized method, declaring, Listing 19-6, LockDemo/Queue.java, Line 011, Page 389

Synchonization client-server demonstration, Listing 19-10, LockDemo/LockDemo.java, Line 001,
Page 399

Thread class public declarations, Listing 19-1, Thread.txt, Line 001, Page 368

Thread, starting in a constructor, Listing 19-7, LockDemo/Job.java, Line 007, Page 391

Threaded programming demonstration, Listing 19-2, ThreadDemo/ThreadDemo.java, Line 001,
Page 372

Threads, notifying of a state change, Listing 19-7, LockDemo/Job.java, Line 040, Page 391

Wait for Enter key while background process runs, Listing 19-2, ThreadDemo/ThreadDemo.java,
Line 050, Page 372

Toolbars

Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 013, Page 504

Adding a toolbar to a frame, Listing 22-14, ToolDemo/ToolDemo.java, Line 120, Page 504

Creating action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 032, Page 504

Floatable toolbar, enabling and disabling, Listing 22-14, ToolDemo/ToolDemo.java, Line 120,
Page 504

Look-and-feel, best choices, Listing 22-14, ToolDemo/ToolDemo.java, Line 095, Page 504

Swing toolbars and actions, Listing 22-14, ToolDemo/ToolDemo.java, Line 001, Page 504

Toolbar, creating using Action objects, Listing 22-14, ToolDemo/ToolDemo.java, Line 081, Page
504

Tooltips

Add tooltip text to a button, Listing 22-1, ButtonIcon/ButtonIcon.java, Line 023, Page 464

TreeMap class

Create a TreeMap container, Listing 17-7, Dictionary/Dictionary.java, Line 006, Page 342

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

573

Getting a TreeMap's key set, Listing 17-7, Dictionary/Dictionary.java, Line 022, Page 342

Insertions into nested containers, Listing 17-7, Dictionary/Dictionary.java, Line 029, Page 342

TreeMap constructors (see also Map and SortedMap interfaces), Listing 17-6, TreeMap.txt, Line
001, Page 341

TreeSet class

Constructing a TreeSet container, Listing 16-6, ParseTree/ParseTree.java, Line 010, Page 321

Creating a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line 014, Page 322

Displaying a TreeSet container's contents, Listing 16-6, ParseTree/ParseTree.java, Line 034, Page
321

Getting a non-inclusive subset of a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line
024, Page 322

Getting an inclusive subset of a TreeSet container, Listing 16-7, SubTree/SubTree.java, Line 027,
Page 322

Parsing words in a text file, Listing 16-6, ParseTree/ParseTree.java, Line 004, Page 321

TreeSet constructors (see also Set and SortedSet), Listing 16-5, TreeSet.txt , Line 001, Page 319

Type-cast expression

Converting int to char using type-casting, Listing 9-2, AbsValue/AbsValue.java, Line 004, Page
161

Type-casting and character input, Listing 6-8, InputDemo/InputDemo.java, Line 010, Page 96

Using type-casting in a compareTo() method, Listing 10-8, SortObjects/SortObjects.java, Line
011, Page 204

Using type-casting with containers, Listing 16-7, SubTree/SubTree.java, Line 027, Page 322

Unicode

Determine a char's integer Unicode value, Listing 8-17, ChType/ChType.java, Line 023, Page
154

Specifying a Unicode char's hexadecimal value, Listing 8-17, ChType/ChType.java, Line 034,
Page 154

Variables

Constructing an array of char, Listing 8-3, CharArray/CharArray.java, Line 004, Page 128

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

574

Converting int to char using type-casting, Listing 9-2, AbsValue/AbsValue.java, Line 004, Page
161

Creating a string from an array of char, Listing 8-3, CharArray/CharArray.java, Line 007, Page
128

Declaring a variable, Listing 4-3, VarDemo/VarDemo.java, Line 003, Page 49

Integer data types, Listing 4-4, IntDemo/IntDemo.java, Line 014, Page 52

Parsing a string to an integer, Listing 9-5, PowerDemo/PowerDemo.java, Line 008, Page 163

Static private data, Listing 6-5, Serial/Serial.java, Line 002, Page 91

Variable of type float, Listing 9-25, ParseFloat/ParseFloat.java, Line 006, Page 184

Windows

Closing a window, Listing 21-3, SwingMenuDemo/SwingMenuDemo.java, Line 013, Page 449

Create a JFrame child window, Listing 23-3, FontDemo/FontDemo.java, Line 006, Page 521

Creating a window border, Listing 21-2, SwingApp/SwingApp.java, Line 011, Page 442

Wrapper classes

Boolean wrapper class public declarations, Listing 9-14, Boolean.txt, Line 001, Page 173

Byte wrapper class public declarations, Listing 9-21, Byte.txt, Line 001, Page 181

Demonstrates Boolean.getBoolean(), Listing 9-16, GetProperty/GetProperty.java, Line 001, Page
176

Double wrapper class public declarations, Listing 9-26, Double.txt, Line 001, Page 184

Float wrapper class public declarations, Listing 9-24, Float.txt, Line 001, Page 183

Integer wrapper class public declarations, Listing 9-18, Integer.txt, Line 001, Page 179

Long wrapper class public declarations, Listing 9-20, Long.txt, Line 001, Page 181

Short wrapper class public declarations, Listing 9-22, Short.txt, Line 001, Page 182

Using a Boolean object, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 004, Page 174

Using the Boolean wrapper class, Listing 9-15, BooleanDemo/BooleanDemo.java, Line 001,
Page 174

Java 2 Just Click! Solutions only For FlyHeart.com 12/28/2002

575

Summary
* Use this printed copy of the CD-ROM's online index to find solutions to problems

by subject.

